OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14722–14733

Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control

William S. Fegadolli, German Vargas, Xuan Wang, Felipe Valini, Luis A. M. Barea, José E. B. Oliveira, Newton Frateschi, Axel Scherer, Vilson R. Almeida, and Roberto R. Panepucci  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14722-14733 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1546 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A proof-of-concept for a new and entirely CMOS compatible thermo-optic reconfigurable switch based on a coupled ring resonator structure is experimentally demonstrated in this paper. Preliminary results show that a single optical device is capable of combining several functionalities, such as tunable filtering, non-blocking switching and reconfigurability, in a single device with compact footprint (~50μm x 30μm).

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.6840) Materials : Thermo-optical materials
(230.4555) Optical devices : Coupled resonators

ToC Category:
Integrated Optics

Original Manuscript: March 23, 2012
Revised Manuscript: May 23, 2012
Manuscript Accepted: May 28, 2012
Published: June 15, 2012

William S. Fegadolli, German Vargas, Xuan Wang, Felipe Valini, Luis A. M. Barea, José E. B. Oliveira, Newton Frateschi, Axel Scherer, Vilson R. Almeida, and Roberto R. Panepucci, "Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control," Opt. Express 20, 14722-14733 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Pavesi and G. Guillot, Optical Interconnects - The Silicon Approach (Springer-Verlag, 2006).
  2. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  3. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23(8), 2455–2461 (2005). [CrossRef]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  5. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011). [CrossRef] [PubMed]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  7. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010). [CrossRef] [PubMed]
  8. P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength Tunable Thermo-Optic WSS for Low Power Consumption C + L Band Tunability,” IEEE Photon. Technol. Lett. 24(2), 152–154 (2012). [CrossRef]
  9. W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express 19(13), 12727–12739 (2011). [CrossRef] [PubMed]
  10. R. Boeck, N. A. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18(24), 25151–25157 (2010). [CrossRef] [PubMed]
  11. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010). [CrossRef] [PubMed]
  12. T. Claes, W. Bogaerts, and P. Bienstman, “Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source,” Opt. Lett. 36(17), 3320–3322 (2011). [CrossRef] [PubMed]
  13. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009). [CrossRef] [PubMed]
  14. E. J. Klein, “Densely integrated microringresonator based components for fiber-to-the-home applications,” Ph.D. thesis, University of Twente (2007). doc.utwente.nl/60711/1/thesis_E_J_Klein.pdf .
  15. H. L. R. Lira, C. B. Poitras, and M. Lipson, “CMOS compatible reconfigurable filter for high bandwidth non-blocking operation,” Opt. Express 19(21), 20115–20121 (2011). [CrossRef] [PubMed]
  16. W. S. Fegadolli, J. E. B. Oliveira, and V. R. Almeida, “Highly linear electro-optic modulator based on ring resonator,” Microw. Opt. Technol. Lett. 53(10), 2375–2378 (2011). [CrossRef]
  17. O. Schwelb, “The nature of spurious mode suppression in extended FSR microring multiplexers,” Opt. Commun. 271(2), 424–429 (2007). [CrossRef]
  18. S. Darmawan and M. K. Chin, “Critical coupling, oscillation, reflection, and transmission in optical waveguide-ring resonator system,” J. Opt. Soc. Am. B 23(5), 834–841 (2006). [CrossRef]
  19. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt. 21(6), 1069–1072 (1982). [CrossRef] [PubMed]
  20. A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1577 KB)     
» Media 2: MOV (2496 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited