OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14734–14745

Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling

Stefan Preussler, Avi Zadok, Andrzej Wiatrek, Moshe Tur, and Thomas Schneider  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14734-14745 (2012)
http://dx.doi.org/10.1364/OE.20.014734


View Full Text Article

Enhanced HTML    Acrobat PDF (986 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-resolution, wide-bandwidth optical spectrum analysis is essential to the measuring and monitoring of advanced optical, millimeter-wave, and terahertz communication systems, sensing applications and device characterization. One category of high-resolution spectrum analyzers reconstructs the power spectral density of a signal under test by scanning a Brillouin gain line across its spectral extent. In this work, we enhance both the resolution and the optical rejection ratio of such Brillouin-based spectrometers using a combination of two techniques. First, two Brillouin loss lines are superimposed upon a central Brillouin gain to reduce its bandwidth. Second, the vector attributes of stimulated Brillouin scattering amplification in standard, weakly birefringent fibers are used to change the signal state of polarization, and a judiciously aligned output polarizer discriminates between amplified and un-amplified spectral contents. A frequency resolution of 3 MHz, or eight orders of magnitude below the central optical frequency, is experimentally demonstrated. In addition, a weak spectral component is resolved in the presence of a strong adjacent signal, which is 30 dB stronger and detuned by only 60 MHz. The measurement method involves low-bandwidth direct detection, and does not require heterodyne beating. The measurement range of the proposed method is scalable to cover the C + L bands, depending on the tunable pump source. The accuracy of the measurements requires that the pump frequencies are well calibrated.

© 2012 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: March 23, 2012
Revised Manuscript: May 10, 2012
Manuscript Accepted: May 12, 2012
Published: June 15, 2012

Citation
Stefan Preussler, Avi Zadok, Andrzej Wiatrek, Moshe Tur, and Thomas Schneider, "Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling," Opt. Express 20, 14734-14745 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14734


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express17(11), 9421–9427 (2009). [CrossRef] [PubMed]
  2. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics5(6), 364–371 (2011). [CrossRef]
  3. T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightwave Technol.28(16), 2247–2257 (2010). [CrossRef]
  4. C. S. Park, Y. K. Yeo, and L. C. Ong, “Demonstration of the GbE service in the converged radio-over-fiber/optical networks,” J. Lightwave Technol.28(16), 2307–2314 (2010). [CrossRef]
  5. I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Sci. Technol.1(2), 477–487 (2011). [CrossRef]
  6. T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R.-P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Sci. Technol. (submitted).
  7. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008). [CrossRef] [PubMed]
  8. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007). [CrossRef] [PubMed]
  9. D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett.14(3), 355–357 (2002). [CrossRef]
  10. F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics4(12), 853–857 (2010). [CrossRef]
  11. J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett.17(4), 855–857 (2005). [CrossRef]
  12. T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett.41(22), 1234–1235 (2005). [CrossRef]
  13. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  14. A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol.20(8), 1425–1432 (2002). [CrossRef]
  15. S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long range sensing using Brillouin echos,” J. Lightwave Technol.28(20), 2993–3003 (2010). [CrossRef]
  16. S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4MHz,” Opt. Express19(9), 8565–8570 (2011). [CrossRef] [PubMed]
  17. S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh-resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Photon. Technol. Lett.23(16), 1118–1120 (2011). [CrossRef]
  18. F. Mihélic, D. Bacquet, J. Zemmouri, and P. Szriftgiser, “Ultrahigh resolution spectral analysis based on a Brillouin fiber laser,” Opt. Lett.35(3), 432–434 (2010). [CrossRef] [PubMed]
  19. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express16(26), 21692–21707 (2008). [CrossRef] [PubMed]
  20. A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express19(22), 21945–21955 (2011). [CrossRef] [PubMed]
  21. A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett.20(16), 1420–1422 (2008). [CrossRef]
  22. L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett.22(10), 712–714 (2010). [CrossRef]
  23. L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics2(8), 474–481 (2008). [CrossRef]
  24. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B22(11), 2378–2384 (2005). [CrossRef]
  25. A. Zadok, S. Chin, L. Thévenaz, E. Zilka, A. Eyal, and M. Tur, “Polarization-induced distortion in stimulated Brillouin scattering slow-light systems,” Opt. Lett.34(16), 2530–2532 (2009). [CrossRef] [PubMed]
  26. T. Schneider, R. Henker, K.-U. Lauterbach, and M. Junker, “Comparison of delay enhancement mechanisms for SBS-based slow light systems,” Opt. Express15(15), 9606–9613 (2007). [CrossRef] [PubMed]
  27. M. O. van Deventer and J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol.12(4), 585–590 (1994). [CrossRef]
  28. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A.97(9), 4541–4550 (2000). [CrossRef] [PubMed]
  29. A. Voskoboinik, J. Wang, B. Shamee, S. R. Nuccio, L. Zhang, M. Chitgarha, A. E. Willner, and M. Tur, “SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation,” J. Lightwave Technol.29(11), 1729–1735 (2011). [CrossRef]
  30. Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thevenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express19(27), 25873–25880 (2011). [CrossRef] [PubMed]
  31. Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave lidar,” Appl. Opt.49(2), 213–219 (2010). [CrossRef] [PubMed]
  32. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009). [CrossRef]
  33. M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express18(22), 22906–22914 (2010). [CrossRef] [PubMed]
  34. T. Schneider, K. Jamshidi, and S. Preußler, “Quasi-light Storage: a method for the tunable storage of optical packets with a potential delay-bandwidth product of several thousand bits,” J. Lightwave Technol.28(17), 2586–2592 (2010). [CrossRef]
  35. S. Preußler, K. Jamshidi, A. Wiatrek, R. Henker, C.-A. Bunge, and T. Schneider, “Quasi-light-storage based on time-frequency coherence,” Opt. Express17(18), 15790–15798 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited