OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 14789–14796

Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm

Shota Yamada, Bong-Shik Song, Jeremy Upham, Takashi Asano, Yoshinori Tanaka, and Susumu Noda  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 14789-14796 (2012)
http://dx.doi.org/10.1364/OE.20.014789


View Full Text Article

Enhanced HTML    Acrobat PDF (923 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that a SiC photonic crystal cannot only inhibit two photon absorption completely, but also suppress higher-order multiple photon absorption significantly at telecommunication wavelengths, compared to conventional Si-based photonic crystal nanocavities. Resonant spectra of a SiC nanocavity maintain a Lorentzian profile even at input energies 100 times higher than what can be applied to a Si nanocavity without causing nonlinear effects. Theoretical fitting of the results indicates that the four photon absorption coefficient in the SiC nanocavity is less than 2.0 × 10−5 cm5/GW3. These results will contribute to the development of high-power applications of SiC nanocavities such as harmonic generation, parametric down conversion, and Raman amplification.

© 2012 OSA

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: April 12, 2012
Revised Manuscript: May 31, 2012
Manuscript Accepted: June 2, 2012
Published: June 18, 2012

Citation
Shota Yamada, Bong-Shik Song, Jeremy Upham, Takashi Asano, Yoshinori Tanaka, and Susumu Noda, "Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm," Opt. Express 20, 14789-14796 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-14789


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  2. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007). [CrossRef]
  3. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009). [CrossRef] [PubMed]
  4. N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm.23(7), 1315–1320 (2005). [CrossRef]
  5. P. E. Barclay, K. Srinivasan, and O. Y. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005). [CrossRef] [PubMed]
  6. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005). [CrossRef] [PubMed]
  7. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006). [CrossRef] [PubMed]
  8. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005). [CrossRef] [PubMed]
  9. H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007). [CrossRef]
  10. H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett.90(23), 231102 (2007). [CrossRef]
  11. H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett.93(5), 051114 (2008). [CrossRef]
  12. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B1(1), 67–72 (1984). [CrossRef]
  13. H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys.39(12), 2737–2746 (2006). [CrossRef]
  14. S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett.107(16), 167407 (2011). [CrossRef] [PubMed]
  15. B. S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express19(12), 11084–11089 (2011). [CrossRef] [PubMed]
  16. S. Yamada, B. S. Song, T. Asano, and S. Noda, “Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities,” Opt. Lett.36(20), 3981–3983 (2011). [CrossRef] [PubMed]
  17. S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett.99(20), 201102 (2011). [CrossRef]
  18. B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008). [CrossRef]
  19. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999). [CrossRef]
  20. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005). [CrossRef] [PubMed]
  21. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003). [CrossRef]
  22. N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett.65(25), 3209–3211 (1994). [CrossRef]
  23. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  24. S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys.7(2), 138–141 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited