OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 14814–14824

Chalcogenide glass layers in silica photonic crystal fibers

Christos Markos, Spyros N. Yannopoulos, and Kyriakos Vlachos  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 14814-14824 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2153 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a novel approach for deposition of amorphous chalcogenide glass films inside the cylindrical air channels of photonic crystal fiber (PCF). In particular, we demonstrate the formation of nanocolloidal solution-based As2S3 films inside the air channels of PCFs of different glass-solvent concentrations for two fibers with cladding-hole diameter 3.5 and 1.3μm. Scanning electron microscopy is used to observe the formed chalcogenide layers and Raman scattering is employed to verify the existence and the structural features of the amorphous As2S3 layers. Optical transmission measurements reveal strong photonic bandgaps over a range covering visible and near-infrared wavelengths. The transmittance spectra and the corresponding losses were recorded in the wavelength range 500–1750 nm. The main advantage of the proposed technique is the simplicity of the deposition of amorphous chalcogenide layers inside the holes of PCF and constitutes an efficient route to the development of fiber-based devices combined with sophisticated glasses for supercontinuum generation as well as other non-linear applications.

© 2012 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(160.4330) Materials : Nonlinear optical materials
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 30, 2012
Revised Manuscript: May 31, 2012
Manuscript Accepted: June 4, 2012
Published: June 18, 2012

Virtual Issues
July 24, 2012 Spotlight on Optics

Christos Markos, Spyros N. Yannopoulos, and Kyriakos Vlachos, "Chalcogenide glass layers in silica photonic crystal fibers," Opt. Express 20, 14814-14824 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  2. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000). [CrossRef]
  3. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express9(7), 319–327 (2001). [CrossRef] [PubMed]
  4. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009). [CrossRef] [PubMed]
  5. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009). [CrossRef]
  6. A. Zakery and S. R. Elliott, Optical nonlinearities in chalcogenide glasses and their applications (Berlin, Springer, 2007).
  7. F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998). [CrossRef]
  8. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids256–257, 6–16 (1999). [CrossRef]
  9. K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys.44(6), 475–588 (1995). [CrossRef]
  10. S. N. Yannopoulos, F. Kyriazis, and I. P. Chochliouros, “Composition-dependent photosensitivity in As-S glasses induced by bandgap light: Structural origin by Raman scattering,” Opt. Lett.36(4), 534–536 (2011). [CrossRef] [PubMed]
  11. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  12. C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids357(11-13), 2480–2483 (2011). [CrossRef]
  13. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19(21), 21003–21010 (2011). [CrossRef] [PubMed]
  14. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express15(16), 10324–10329 (2007). [CrossRef] [PubMed]
  15. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006). [CrossRef] [PubMed]
  16. F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010). [CrossRef]
  17. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010). [CrossRef] [PubMed]
  18. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express11(20), 2589–2596 (2003). [CrossRef] [PubMed]
  19. C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15(19), 12145–12150 (2007). [CrossRef] [PubMed]
  20. W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009). [CrossRef] [PubMed]
  21. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express19(8), 7790–7798 (2011). [CrossRef] [PubMed]
  22. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006). [CrossRef] [PubMed]
  23. C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express18(23), 24344–24351 (2010). [CrossRef] [PubMed]
  24. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstrucutred optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000). [CrossRef]
  25. A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, “A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid,” Opt. Express18(24), 24654–24660 (2010). [CrossRef] [PubMed]
  26. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008). [CrossRef]
  27. N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011). [CrossRef] [PubMed]
  28. C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express18(25), 26744–26753 (2010). [CrossRef] [PubMed]
  29. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007). [CrossRef] [PubMed]
  30. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express18(15), 15523–15530 (2010). [CrossRef] [PubMed]
  31. D. J. Milliron, S. Raoux, R. M. Shelby, and J. Jordan-Sweet, “Solution-phase deposition and nanopatterning of GeSbSe phase-change materials,” Nat. Mater.6(5), 352–356 (2007). [CrossRef] [PubMed]
  32. T. A. Guiton and C. G. Pantano, “Solution/gelation of arsenic trisulfide in amine solvents,” Chem. Mater.1(5), 558–563 (1989). [CrossRef]
  33. S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express18(6), 5472–5480 (2010). [CrossRef] [PubMed]
  34. K. S. Andrikopoulos, A. G. Kalampounias, and S. N. Yannopoulos, “Rounding effects on doped sulfur’s living polymerization: The case of As and Se,” Phys. Rev. B72(1), 014203 (2005). [CrossRef]
  35. G. C. Chern and I. Lauks, “Spin coated amorphous chalcogenide films: Structural characterization,” J. Appl. Phys.54(5), 2701–2705 (1983). [CrossRef]
  36. R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B8(2), 756–768 (1973). [CrossRef]
  37. T. Kohoutek, T. Wagner, M. Frumar, A. Chrissanthopoulos, O. Kostadinova, and S. N. Yannopoulos, “Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films,” J. Appl. Phys.103(6), 063511 (2008). [CrossRef]
  38. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002). [CrossRef] [PubMed]
  39. N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express12(8), 1540–1550 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited