OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 14848–14856

Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water

Godai Miyaji, Kenzo Miyazaki, Kaifeng Zhang, Takakazu Yoshifuji, and Junya Fujita  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 14848-14856 (2012)
http://dx.doi.org/10.1364/OE.20.014848


View Full Text Article

Enhanced HTML    Acrobat PDF (3472 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Focused on silicon surface in water, superimposed multiple shots of linearly polarized 800-nm, 100-fs, 10-Hz laser pulses at lower fluence than the single-pulse ablation threshold are shown to produce two kinds of periodic nanostructures with almost constant periods of 150 nm and 400 nm. Surface plasmon polaritons excited in the surface layer illustrates well the formation of nanostructures and its dynamic properties observed. Pump and probe measurements of the ultrafast change in surface reflectivity during the interaction have demonstrated that the multiple low-fluence fs pulses are crucial to the nanostructuring through the accumulation of non-thermal bonding structure change and the subsequent nanoscale ablation.

© 2012 OSA

OCIS Codes
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3390) Other areas of optics : Laser materials processing
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: May 9, 2012
Revised Manuscript: June 5, 2012
Manuscript Accepted: June 6, 2012
Published: June 18, 2012

Citation
Godai Miyaji, Kenzo Miyazaki, Kaifeng Zhang, Takakazu Yoshifuji, and Junya Fujita, "Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water," Opt. Express 20, 14848-14856 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-14848


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci.197–198, 891–895 (2002). [CrossRef]
  2. N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys., A Mater. Sci. Process.76(6), 983–985 (2003). [CrossRef]
  3. Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett.84(1), 10–12 (2004). [CrossRef]
  4. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003). [CrossRef]
  5. G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films467(1-2), 334–341 (2004). [CrossRef]
  6. C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology21(7), 075304 (2010). [CrossRef] [PubMed]
  7. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett.32(13), 1932–1934 (2007). [CrossRef] [PubMed]
  8. E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond Laser Writing of Subwave One Dimensional Quasiperiodic Nanostructures on a Titanium Surface,” JETP Lett.90(2), 107–110 (2009). [CrossRef]
  9. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  10. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically Produced Arrays of Planar Nanostructures inside Fused Silica,” Phys. Rev. Lett.96(5), 057404 (2006). [CrossRef] [PubMed]
  11. A. E. Siegman and P. M. Faucher, “Stimulated Wood’s Anomalies on Laser-Illuminated Surfaces,” IEEE J. Quantum Electron.22(8), 1384–1403 (1986) (and references therein). [CrossRef]
  12. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys.106(10), 104910 (2009). [CrossRef]
  13. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano3(12), 4062–4070 (2009). [CrossRef] [PubMed]
  14. O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci.252(13), 4702–4706 (2006). [CrossRef]
  15. R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett.98(21), 211905 (2011). [CrossRef]
  16. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett.82(11), 1703–1705 (2003). [CrossRef]
  17. G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett.91(12), 123102 (2007). [CrossRef]
  18. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express16(20), 16265–16271 (2008). [CrossRef] [PubMed]
  19. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express13(17), 6651–6656 (2005). [CrossRef] [PubMed]
  20. J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci.221(1-4), 215–230 (2004). [CrossRef]
  21. D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process.89(2), 283–291 (2007). [CrossRef]
  22. K. Miyazaki, N. Maekawa, W. Kobayashi, N. Yasumaru, and J. Kiuchi, “Reflectivity in femtosecond-laser-induced structural changes of diamond-like carbon film,” Appl. Phys., A Mater. Sci. Process.80(1), 17–21 (2005). [CrossRef]
  23. Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita, R. Sasaki, H. Nagai, and M. Yoshida, “Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation,” Appl. Phys. Lett.90(4), 044107 (2007). [CrossRef]
  24. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  25. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B61(4), 2643–2650 (2000). [CrossRef]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).
  27. D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci.109–110, 1–10 (1997). [CrossRef]
  28. C. V. Shank, R. Yen, and C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett.50(6), 454–457 (1983). [CrossRef]
  29. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient States of Matter during Short Pulse Laser Ablation,” Phys. Rev. Lett.81(1), 224–227 (1998). [CrossRef]
  30. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett.36(2), 229–231 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited