OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 14864–14870

Polarization division multiplexed 4 × 10 Gbps simultaneous transmissions in 1.0-µm waveband and C-waveband over a 14.4-km-long holey fiber using an ultra-broadband photonic transport system

Yu Omigawa, Naokatsu Yamamoto, Atsushi Kanno, Tetsuya Kawanishi, Yasuaki Kurata, and Hideyuki Sotobayashi  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 14864-14870 (2012)
http://dx.doi.org/10.1364/OE.20.014864


View Full Text Article

Enhanced HTML    Acrobat PDF (1506 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization division multiplexing (PDM) and wavelength division multiplexing (WDM) are essential techniques for enhancing the capacity of photonic networks and facilitating the efficient use of optical frequency resources. 2 PDM × 2 WDM × 10 Gbps error-free simultaneous transmissions in the 1.0-µm waveband and C-waveband are successfully demonstrated for the first time using an ultra-broadband photonic transport system over a 14.4-km-long holey fiber transmission line.

© 2012 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4510) Fiber optics and optical communications : Optical communications
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 13, 2012
Revised Manuscript: May 7, 2012
Manuscript Accepted: May 18, 2012
Published: June 19, 2012

Citation
Yu Omigawa, Naokatsu Yamamoto, Atsushi Kanno, Tetsuya Kawanishi, Yasuaki Kurata, and Hideyuki Sotobayashi, "Polarization division multiplexed 4 × 10 Gbps simultaneous transmissions in 1.0-µm waveband and C-waveband over a 14.4-km-long holey fiber using an ultra-broadband photonic transport system," Opt. Express 20, 14864-14870 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-14864


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s Transmission of Polarization-Multiplexed RZ-DQPSK Signals,” J. Lightwave Technol.26(1), 79–84 (2008). [CrossRef]
  2. N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device,” Proc. SPIE7235, 72350C (2009). [CrossRef]
  3. N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express16(24), 19836–19843 (2008). [CrossRef] [PubMed]
  4. K. Kurokawa, K. Tsujikawa, K. Tajima, K. Nakajima, and I. Sankawa, “10Gb/s WDM Transmission at 1064 and 1550nm over 24km Photonic Crystal Fiber with Negative Power Penalties,” IEICE Trans. Comm.E90-B(10), 2803–2808 (2007). [CrossRef]
  5. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997). [CrossRef]
  6. H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express3(6), 109–114 (2006). [CrossRef]
  7. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007). [CrossRef]
  8. R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE7234, 72340G, 72340G-8 (2009). [CrossRef]
  9. N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys.49(4), 04DG03 (2010). [CrossRef]
  10. N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-µm-Waveband Coherent Light Sources,” Jpn. J. Appl. Phys.51(2), 02BG08 (2012). [CrossRef]
  11. Xiang Zhou and Jianjun Yu, “High capacity coherent PDM-WDM transmission system demonstrations,” in Photonics Society Summer Topical Meeting Series (IEEE, 2010), pp. 50–51.
  12. N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Simultaneous 3 x 10 Gbps optical data transmission in 1-mum, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system,” Opt. Express18(5), 4695–4700 (2010). [CrossRef] [PubMed]
  13. N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-µm waveband for photonic transport systems,” Proc. SPIE7958, 79580F, 79580F-9 (2011). [CrossRef]
  14. R. Noé, S. Hinz, D. Sandel, and F. Wüst, “Crosstalk Detection Schemes for Polarization Division Multiplex Transmission,” J. Lightwave Technol.19(10), 1469–1475 (2001). [CrossRef]
  15. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization maintaining photonic crystal fibre,” Electron. Lett.37(23), 1399–1401 (2001). [CrossRef]
  16. K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE6769, 67790J, 67790J-11 (2007). [CrossRef]
  17. K. Mukasa, K. Imamura, R. Sugizaki, and T. Yagi, “Comparisons of Merits on Wide-Band Transmission Systems between Using Extremely Improved Solid SMFs with Aeff of 160µm2 and Loss of 0.175dB/km and Using Large-Aeff Holey Fibers Enabling Transmission over 600nm Bandwidth,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2008), paper OThR.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited