OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 14879–14890

Optimization of plasmonic nanostructure for nanoparticle trapping

Jingzhi Wu and Xiaosong Gan  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 14879-14890 (2012)
http://dx.doi.org/10.1364/OE.20.014879


View Full Text Article

Enhanced HTML    Acrobat PDF (1032 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed analysis of nanoparticle trapping using plasmonic nanostructures, which predicts an improvement of two orders of magnitude in trapping force obtained by optimizing the plasmon resonance of the nanostructures. As the result, a total of four orders of magnitude enhancement in trapping force can be achieved comparing to the case without the nanostructures. In addition, it is illustrated that tuning the resonance wavelength is achievable by varying the diameter and/or the height of the nanorods.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: March 9, 2012
Revised Manuscript: April 28, 2012
Manuscript Accepted: June 5, 2012
Published: June 19, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Jingzhi Wu and Xiaosong Gan, "Optimization of plasmonic nanostructure for nanoparticle trapping," Opt. Express 20, 14879-14890 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-14879


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011). [CrossRef]
  2. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008). [CrossRef] [PubMed]
  3. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett.12(2), 796–801 (2012). [CrossRef] [PubMed]
  4. X. Gao and X. Gan, “Modulation of evanescent focus by localized surface plasmons waveguide,” Opt. Express17(25), 22726–22734 (2009). [CrossRef] [PubMed]
  5. X. Miao and L. Y. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quantum Electron.13(6), 1655–1662 (2007). [CrossRef]
  6. X. Miao, B. K. Wilson, S. H. Pun, and L. Y. Lin, “Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics,” Opt. Express16(18), 13517–13525 (2008). [CrossRef] [PubMed]
  7. B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano5(8), 6374–6382 (2011). [CrossRef] [PubMed]
  8. M. Bora, B. J. Fasenfest, E. M. Behymer, A. S. P. Chang, H. T. Nguyen, J. A. Britten, C. C. Larson, J. W. Chan, R. R. Miles, and T. C. Bond, “Plasmon resonant cavities in vertical nanowire arrays,” Nano Lett.10(8), 2832–2837 (2010). [CrossRef] [PubMed]
  9. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  10. J. Wu and X. Gan, “Three dimensional nanoparticle trapping enhanced by surface plasmon resonance,” Opt. Express18(26), 27619–27626 (2010). [CrossRef] [PubMed]
  11. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008). [CrossRef]
  12. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10(3), 1006–1011 (2010). [CrossRef] [PubMed]
  13. Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett.11(9), 3763–3767 (2011). [CrossRef] [PubMed]
  14. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009). [CrossRef]
  15. C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett.12(1), 125–132 (2012). [CrossRef] [PubMed]
  16. A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett.98(11), 111110 (2011). [CrossRef]
  17. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat Commun.2, 469 (2011). [CrossRef] [PubMed]
  18. D. Lapotko, “Optical excitation and detection of vapor bubbles around plasmonic nanoparticles,” Opt. Express17(4), 2538–2556 (2009). [CrossRef] [PubMed]
  19. P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett.107(3), 037401 (2011). [CrossRef] [PubMed]
  20. R. T. Schermer, C. C. Olson, J. P. Coleman, and F. Bucholtz, “Laser-induced thermophoresis of individual particles in a viscous liquid,” Opt. Express19(11), 10571–10586 (2011). [CrossRef] [PubMed]
  21. X. Miao, B. K. Wilson, and L. Y. Lin, “Localized surface plasmon assisted microfluidic mixing,” Appl. Phys. Lett.92(12), 124108 (2008). [CrossRef]
  22. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005). [CrossRef] [PubMed]
  23. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett.10(9), 3596–3603 (2010). [CrossRef] [PubMed]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  25. “FDTD Solutions,” Lumerical Solutions Inc., www.lumerical.com .
  26. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett.89(24), 246802 (2002). [CrossRef] [PubMed]
  27. H.-R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient,” Phys. Rev. Lett.102(20), 208301 (2009). [CrossRef] [PubMed]
  28. M. Braibanti, D. Vigolo, and R. Piazza, “Does thermophoretic mobility depend on particle size?” Phys. Rev. Lett.100(10), 108303 (2008). [CrossRef] [PubMed]
  29. R. Piazza and A. Parola, “Thermophoresis in colloidal suspensions,” J. Phys. Condens. Matter20(15), 153102 (2008). [CrossRef]
  30. S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A.103(52), 19678–19682 (2006). [CrossRef] [PubMed]
  31. G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett.94(15), 153109 (2009). [CrossRef]
  32. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys.70(1), 37–41 (2002). [CrossRef]
  33. S. Buzzi, M. Galli, M. Agio, and J. F. Loffler, “Silver high-aspect-ratio micro- and nanoimprinting for optical applications,” Appl. Phys. Lett.94(22), 223115 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited