OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 14891–14905

Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent

Harold Dehez, Alexandre April, and Michel Piché  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 14891-14905 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1133 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical beams exhibiting a long depth of focus and a minimum spot size can be obtained with the tight focusing of a narrow annulus of radially polarized light, leading to a needle of longitudinally polarized light. Such beams are of increasing interest for their applications, for example in optical data storage, particle acceleration, and biomedical imaging. Hence one needs to characterize the needles of longitudinally polarized light obtained with different focusing optics and incident beams. In this paper, we present analytical expressions for the electric field of such a nearly nondiffracting, subwavelength beam obtained with a parabolic mirror or an aplanatic lens. Based on these results, we give expressions of the transverse and longitudinal full widths at half maximum of the focal lines as a function of the width of the incident annular beam and we compare the performances of the two focusing systems. Then, we propose a practical solution to produce a needle of longitudinally polarized light with a tunable axial extent and a transverse width reaching the theoretical limit of 0.36λ.

© 2012 OSA

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(260.1960) Physical optics : Diffraction theory
(260.5430) Physical optics : Polarization
(350.5500) Other areas of optics : Propagation
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Physical Optics

Original Manuscript: March 23, 2012
Revised Manuscript: May 18, 2012
Manuscript Accepted: May 25, 2012
Published: June 19, 2012

Harold Dehez, Alexandre April, and Michel Piché, "Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent," Opt. Express 20, 14891-14905 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Varin, M. Piché, M. A. Porras, “Acceleration of electrons from rest to GeV energies by ultrashort transverse magnetic laser pulses in free space,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(Pt 2), 026603 (2005). [CrossRef] [PubMed]
  2. H. Dehez, M. Piché, Y. De Koninck, “Enhanced resolution in two-photon imaging using a TM01 laser beam at a dielectric interface,” Opt. Lett. 34(23), 3601–3603 (2009). [CrossRef] [PubMed]
  3. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004). [CrossRef] [PubMed]
  4. Y. Zhang, J. Bai, “Improving the recording ability of a near-field optical storage system by higher-order radially polarized beams,” Opt. Express 17(5), 3698–3706 (2009). [CrossRef] [PubMed]
  5. L. Rayleigh, “On the diffraction of object-glasses,” Mon. Not. R. Astron. Soc. 33, 59 (1872).
  6. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959). [CrossRef]
  7. K. S. Youngworth, T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000). [CrossRef] [PubMed]
  8. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006), Chap. 3.
  9. Y. Kozawa, S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24(6), 1793–1798 (2007). [CrossRef] [PubMed]
  10. V. P. Kalosha, I. Golub, “Toward the subdiffraction focusing limit of optical superresolution,” Opt. Lett. 32(24), 3540–3542 (2007). [CrossRef] [PubMed]
  11. P. Varga, P. Török, “Focusing of electromagnetic waves by paraboloid mirrors. I. Theory,” J. Opt. Soc. Am. A 17(11), 2081–2089 (2000). [CrossRef] [PubMed]
  12. M. A. Lieb, A. J. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express 8(7), 458–474 (2001). [CrossRef] [PubMed]
  13. N. Davidson, N. Bokor, “High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens,” Opt. Lett. 29(12), 1318–1320 (2004). [CrossRef] [PubMed]
  14. A. April, P. Bilodeau, M. Piché, “Focusing a TM01 beam with a slightly tilted parabolic mirror,” Opt. Express 19(10), 9201–9212 (2011). [CrossRef] [PubMed]
  15. A. April, M. Piché, “4π Focusing of TM01 beams under nonparaxial conditions,” Opt. Express 18(21), 22128–22140 (2010). [CrossRef] [PubMed]
  16. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000). [CrossRef]
  17. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, “The focus of light – theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72(1), 109–113 (2001). [CrossRef]
  18. R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  19. T. Grosjean, D. Courjon, “Smallest focal spots,” Opt. Commun. 272(2), 314–319 (2007). [CrossRef]
  20. J. Stadler, C. Stanciu, C. Stupperich, A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett. 33(7), 681–683 (2008). [CrossRef] [PubMed]
  21. C. Debus, M. A. Lieb, A. Drechsler, A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(3), 203–208 (2003). [CrossRef] [PubMed]
  22. T. Grosjean, D. Courjon, C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32(8), 976–978 (2007). [CrossRef] [PubMed]
  23. P. Dufour, M. Piché, Y. De Koninck, N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45(36), 9246–9252 (2006). [CrossRef] [PubMed]
  24. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011). [CrossRef] [PubMed]
  25. L. Novotny, M. R. Beversluis, K. S. Youngworth, T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  26. J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009). [CrossRef]
  27. D. P. Biss, T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28(11), 923–925 (2003). [CrossRef] [PubMed]
  28. C. Hnatovsky, V. Shvedov, W. Krolikowski, A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011). [CrossRef] [PubMed]
  29. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008). [CrossRef]
  30. K. Kitamura, K. Sakai, S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express 18(5), 4518–4525 (2010). [CrossRef] [PubMed]
  31. K. B. Rajesh, N. V. Suresh, P. M. Anbarasan, K. Gokulakrishnan, G. Mahadevan, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011). [CrossRef]
  32. C. J. R. Sheppard, M. Gu, “Imaging by high aperture optical system,” J. Mod. Opt. 40(8), 1631–1651 (1993). [CrossRef]
  33. P.-A. Bélanger, M. Rioux, “Ring pattern of a lens-axicon doublet illuminated by a Gaussian beam,” Appl. Opt. 17(7), 1080–1088 (1978). [CrossRef] [PubMed]
  34. H. Kawauchi, Y. Kozawa, S. Sato, “Generation of radially polarized Ti:sapphire laser beam using a c-cut crystal,” Opt. Lett. 33(17), 1984–1986 (2008). [CrossRef] [PubMed]
  35. M. Stalder, M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996). [CrossRef] [PubMed]
  36. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited