OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 14921–14927

Room-temperature electroluminescence from germanium in an Al0.3Ga0.7As/Ge heterojunction light-emitting diode by Γ-valley transport

Seongjae Cho, Byung-Gook Park, Changjae Yang, Stanley Cheung, Euijoon Yoon, Theodore I. Kamins, S. J. Ben Yoo, and James S. Harris, Jr.  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 14921-14927 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1352 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Group-IV materials for monolithic integration with silicon optoelectronic systems are being extensively studied. As a part of efforts, light emission from germanium has been pursued with the objective of evolving germanium into an efficient light source for optical communication systems. In this study, we demonstrate room-temperature electroluminescence from germanium in an Al0.3Ga0.7As/Ge heterojunction light-emitting diode without any complicated manipulation for alternating material properties of germanium. Electroluminescence peaks were observed near 1550 nm and the energy around this wavelength corresponds to that emitted from direct recombination at the Γ-valley of germanium.

© 2012 OSA

OCIS Codes
(160.3130) Materials : Integrated optics materials
(230.3670) Optical devices : Light-emitting diodes
(230.3990) Optical devices : Micro-optical devices
(230.4000) Optical devices : Microstructure fabrication
(310.3840) Thin films : Materials and process characterization

ToC Category:
Optical Devices

Original Manuscript: April 18, 2012
Revised Manuscript: June 6, 2012
Manuscript Accepted: June 7, 2012
Published: June 19, 2012

Seongjae Cho, Byung-Gook Park, Changjae Yang, Stanley Cheung, Euijoon Yoon, Theodore I. Kamins, S. J. Ben Yoo, and James S. Harris, "Room-temperature electroluminescence from germanium in an Al0.3Ga0.7As/Ge heterojunction light-emitting diode by Γ-valley transport," Opt. Express 20, 14921-14927 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005). [CrossRef] [PubMed]
  2. A. Mekis, “Silicon photonics: Lighting up the chip,” Nat. Photonics2(7), 389–390 (2008). [CrossRef]
  3. H. J. Osten and P. Gaworzewski, “Charge transport in strained Si1-yCy and Si1-x-yGexCy alloys on Si (001),” J. Appl. Phys.82(10), 4977–4981 (1997). [CrossRef]
  4. R. Ragan, K. S. Min, and H. A. Atwater, “Direct energy gap group IV semiconductor alloys and quantum dot arrays in SnxGe1-x/Ge and SnxSi1-x/Si alloy systems,” Mater. Sci. Eng. B87(3), 204–213 (2001). [CrossRef]
  5. S. Cho, R. Chen, S. Koo, G. Shambat, H. Lin, N. Park, J. Vučković, T. I. Kamins, B.-G. Park, and J. S. Harris, “Fabrication and Analysis of Epitaxially Grown Ge1-xSnx Microdisk Resonator with 20-nm Free-Spectral Range,” IEEE Photon. Technol. Lett.23(20), 1535–1537 (2011). [CrossRef]
  6. S. N. Chattopadhyay, C. B. Overton, S. Vetter, M. Azadeh, B. H. Olson, and N. E. Naga, “Optically Controlled Silicon MESFET Fabrication and Characterizations for Optical Modulator/Demodulator,” J. Semicond. Technol. Sci.10(3), 213–224 (2010). [CrossRef]
  7. K.-Y. Park, W.-S. Oh, J.-C. Choi, and W.-Y. Choi, “Design of 250-Mb/s Low-Power Fiber Optic Transmitter and Receiver ICs for POF Applications,” J. Semicond. Technol. Sci.11(3), 221–228 (2011). [CrossRef]
  8. T. H. Loh, H. S. Nguyen, R. Murthy, M. B. Yu, W. Y. Loh, G. Q. Lo, N. Balasubramanian, D. L. Kwong, J. Wang, and S. J. Lee, “Selective epitaxial germanium on silicon-on-insulator high speed photodetectors using low-temperature ultrathin Si0.8Ge0.2 buffer,” Appl. Phys. Lett.91(7), 073503 (2007). [CrossRef]
  9. Z. Huang, N. Kong, X. Guo, M. Liu, N. Duan, A. L. Beck, S. K. Banerjee, and J. C. Campbell, “21-GHz-Bandwidth Germanium-on-Silicon Photodiode Using Thin SiGe Buffer Layers,” IEEE J. Sel. Top. Quantum Electron.12(6), 1450–1454 (2006). [CrossRef]
  10. Z. Huang, J. Oh, and J. C. Campbell, “Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using this SiGe buffer layer,” Appl. Phys. Lett.85(15), 3286–3288 (2004). [CrossRef]
  11. Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vučković, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett.98(1), 011111 (2011). [CrossRef]
  12. M. E. Taylor, G. He, H. A. Atwater, and A. Polman, “Solid phase epitaxy of diamond cubic SnxGe1-x alloys,” J. Appl. Phys.80(8), 4384–4388 (1996). [CrossRef]
  13. V. R. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Ternary SiGeSn alloys: New opportunities for strain and bandgap engineering using group IV semiconductors,” Thin Solid Films518(9), 2531–2537 (2010). [CrossRef]
  14. H. Lin, R. Chen, Y. Huo, T. I. Kamins, and J. S. Harris, “Raman study of strained Ge1-xSnx alloys,” Appl. Phys. Lett.98(26), 261917 (2011). [CrossRef]
  15. S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vučković, and Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express17(12), 10019–10024 (2009). [CrossRef] [PubMed]
  16. G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vučković, “Direct band Ge photoluminescence near 1.6 μm coupled to Ge-on-Si microdisk resonators,” Appl. Phys. Lett.97(24), 241102 (2010). [CrossRef]
  17. P. Cheng, B. G. Park, S. Kim, and J. S. Harris, “The X-valley transport in GaAs/AlAs triple barrier structures,” J. Appl. Phys.65(12), 5199–5201 (1989). [CrossRef]
  18. D. Arnold, K. Hess, and G. J. Iafrate, “Electron transport in heterostructure hot-electron diodes,” Appl. Phys. Lett.53(5), 373–375 (1988). [CrossRef]
  19. A. K. Saxena, “The conduction band structure and deep levels in Ga1-xAlxAs alloys from a high-pressure experiment,” J. Phys. C Solid State Phys.13(23), 4323–4334 (1980). [CrossRef]
  20. B. G. Streetman and S. Banerjee, Solid State Electronics Devices (Prentice Hall, 2000).
  21. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley-Interscience, 2007).
  22. ATLAS User’s Manual (Silvaco International, Santa Clara, 2011).
  23. K. J. Choi, S. Y. Han, J.-L. Lee, J. K. Moon, M. Park, and H. Kim, “Au/Ge/Ni/Au and Pd/Ge/Ti/Au Ohmic Contacts to AlxGa1-xAs/InGaAs (x = 0.75) Pseudomorphic High Electron Mobility Transistor,” J. Korean Phys. Soc.43, 253–258 (2003).
  24. T. G. Finstad, “The annealing behavior of Ge-Au-Ni, Ge-Au-Pt and Ge-Au-Pd trilayered films,” Thin Solid Films47(3), 279–290 (1977). [CrossRef]
  25. T. S. Kuan, P. E. Batson, T. N. Jackson, H. Rupprecht, and E. L. Wilkie, “Electron microscope studies of an alloyed Au/Ni/Au-Ge ohmic contact to GaAs,” J. Appl. Phys.54(12), 6952–6957 (1983). [CrossRef]
  26. G. Mak and H. M. van Driel; “Femtosecond transmission spectroscopy at the direct band edge of germanium,” Phys. Rev. B Condens. Matter49(23), 16817–16820 (1994). [CrossRef] [PubMed]
  27. G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Ménendez, “Direct versus indirect optical recombination in Ge films grown on Si substrates,” Phys. Rev. B84(20), 205307 (2011). [CrossRef]
  28. J. Wagner and L. Viňa, “Radiative recombination in heavily doped p-type germanium,” Phys. Rev. B30(12), 7030–7036 (1984). [CrossRef]
  29. Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34(1), 149–154 (1967). [CrossRef]
  30. T. Mukai, M. Yamada, and S. Nakamura, “Current and temperature dependences of electroluminescence of InGaN-Based UV/blue/green light-emitting diodes,” Jpn. J. Appl. Phys.37(Part 2, No. 11B), L1358–L1361 (1998). [CrossRef]
  31. J. Kettle, R. M. Perks, and P. Dunstan, “Localised joule heating in AlGaInP light emitting diodes,” Electron. Lett.42(19), 1122–1123 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited