OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 14960–14970

Energy-efficiency of optical network units with vertical-cavity surface-emitting lasers

Elaine Wong, Michael Mueller, Maluge P. I. Dias, Chien Aun Chan, and Markus C. Amann  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 14960-14970 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1566 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The energy savings of 10 Gbps vertical-cavity surface-emitting lasers (VCSELs) for use in energy-efficient optical network units (ONUs) is critically examined in this work. We experimentally characterize and analytically show that the fast settling time and low power consumption during active and power-saving modes allow the VCSEL-ONU to achieve significant energy savings over the distributed feedback laser (DFB) based ONU. The power consumption per customer using VCSEL-ONUs and DFB-ONUs, is compared through an illustrative example of 10G-EPON for Video-on-Demand delivery. Using energy consumption models and numerical analyses in sleep and doze mode operations, we present an impact study of network and protocol parameters, e.g. polling cycle time, network load, and upstream access scheme used, on the achievable energy savings of VCSEL-ONUs over DFB-ONUs. Guidance on the specific power-saving mode to maximum energy savings throughout the day, is also presented.

© 2012 OSA

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4510) Fiber optics and optical communications : Optical communications
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 9, 2012
Revised Manuscript: June 1, 2012
Manuscript Accepted: June 4, 2012
Published: June 19, 2012

Elaine Wong, Michael Mueller, Maluge P. I. Dias, Chien Aun Chan, and Markus C. Amann, "Energy-efficiency of optical network units with vertical-cavity surface-emitting lasers," Opt. Express 20, 14960-14970 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Baliga, R. Ayre, K. Hinton, W. V. Sorin, and R. Tucker, “Energy Consumption in Optical IP Networks,” J. Lightwave Technol.27(13), 2391–2403 (2009). [CrossRef]
  2. IEEE. Std, 802.3az–2010, [Online]. Available: http://standards.ieee.org/getieee802/download/802.3az-2010.pdf
  3. “GPON power conservation,” ITU-T G-series Recommendations –Supplement 45 (G.sup-45), 05/2009.
  4. J. Mandin, “EPON Powersaving via Sleep Mode,” IEEE P802.3av 10GEPON Task Force Meeting (2008).
  5. E. Igawa, M. Nogami, and J. Nakagawa, “Symmetric 10G-EPON ONU BMT Employing Dynamic Power Save Control Circuit,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Los Angeles, USA, NTuD5, (2011).
  6. W. Hofmann, M. Mueller, G. Bohm, M. Ortsiefer, and M. C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett.21(13), 923–925 (2009). [CrossRef]
  7. A. Gatto, A. Boletti, P. Boffi, C. Neumeyr, M. Ortsiefer, E. Rönneberg, and M. Martinelli, “1.3 µm VCSEL transmission performance up to 12.5 Gbps for metro access networks,” IEEE Photon. Technol. Lett.21(12), 778–780 (2009). [CrossRef]
  8. E. Wong, M. Mueller, P. I. Dias, C. A. Chan, and M. C. Amann, “Energy Saving Strategies for VCSEL ONUs”, Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Los Angeles, USA, OTu1H5 (2012).
  9. Analog Devices ADN2530 data sheet, [Online]. Available: http://www.analog.com/static/imported-files/data_sheets/ADN2530.pdf
  10. S. W. Wong, L. Valcarenghi, S.-H. Yen, D. R. Campelo, S. Yamashit, and L. Kazovsky, “Sleep mode for energy saving PONs: Advantages and Drawbacks,” Proc. of IEEE GLOBECOM Workshops, (2009).
  11. NEL Laser Diodes, [Online]. Available: http://www.nttelectronics.com/en/products/photonics/pdf/ NLK5B5EBKA.pdf
  12. Analog Devices ADN2531 data sheet, [Online]. Available: http://www.analog.com/static/imported-files/data_sheets/ADN2531.pdf
  13. M. Mueller, C. Grasse, K. Saller, T. Gruendl, G. Boehm, and M. C. Amann, “1.3 μm High-Power Short-Cavity VCSELs for High-Speed Applications”, CLEO/QELS, San Jose, USA, CW3N.2, (2012).
  14. IEEE. Std, 802.3av – 2009, [Online]. Available: “ http://standards.ieee.org/getieee802/download/802.3av-2009.pdf
  15. J. Baliga, R. Ayres, K. Hinton, and R. Tucker, “Architectures for Energy-Efficient IPTV Networks,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf, San Diego, USA, ThQ5 (2008).
  16. C. Jayasundara, A. Nirmalathas, E. Wong, and N. Nadarajah, “Energy Efficient Content Distribution for VoD Services,” Proc. of the IEEE/OSA Opt. Fiber Commun. Conf, Los Angeles, USA, OWR3 (2011).
  17. M. Rabinovich and O. Spatscheck, Web Caching and Replication: Addison Wesley (2001).
  18. B. Skubic and D. Hood, “A comparison of DBA for EPON, GPON, and NG TDM PON,” IEEE Commun. Mag.47, 540–548 (2009).
  19. Y. Hongliang, Z. Dongdong, Y. Z. Ben, and Z. Weimin, “Understanding user behavior in large-scale video-on-demand systems,” Proc. 1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006, Leuven, Belgium, 1–12 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited