OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 14980–14990

Multichannel optical diode with unidirectional diffraction relevant total transmission

Andriy E. Serebryannikov, A. Ozgur Cakmak, and Ekmel Ozbay  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 14980-14990 (2012)
http://dx.doi.org/10.1364/OE.20.014980


View Full Text Article

Enhanced HTML    Acrobat PDF (1672 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We will show that broadband unidirectional optical transmission with a total transmission maximum inside the band can be obtained for linearly polarized incident waves in the nonsymmetric photonic crystal gratings made of isotropic linear materials at a fixed nonzero or zero angle of incidence. Being based on the merging of diffraction and dispersion effects, the basic physical mechanism studied exploits the transmission channels associated with higher orders, for which asymmetry in the coupling conditions at the two grating interfaces appears when spatial inversion symmetry is broken. Total transmission in one direction and zero transmission in the opposite direction can be obtained due to hybridization of Fabry-Perot type resonances with a diffraction anomaly that yields a diode-like operation regime. Single-beam deflection and two-beam splitting can be obtained, for which transmission can be (nearly) total, if the corrugated side is illuminated. In contrast to the previous studies, it is also shown that unidirectional transmission can appear only at a fixed frequency and only due to diffractions, when total transmission occurs at the noncorrugated-side illumination, being in agreement with the Lorentz Lemma.

© 2012 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(050.2230) Diffraction and gratings : Fabry-Perot
(120.7000) Instrumentation, measurement, and metrology : Transmission
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 1, 2012
Revised Manuscript: May 29, 2012
Manuscript Accepted: June 10, 2012
Published: June 20, 2012

Citation
Andriy E. Serebryannikov, A. Ozgur Cakmak, and Ekmel Ozbay, "Multichannel optical diode with unidirectional diffraction relevant total transmission," Opt. Express 20, 14980-14990 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-14980


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008). [CrossRef] [PubMed]
  2. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008). [CrossRef] [PubMed]
  3. A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality and frozen modes in magnetic photonic crystals,” J. Magn. Magn. Mater. 300(1), 117–121 (2006). [CrossRef]
  4. C. He, X.-L. Chen, M.-H. Lu, X.-F. Li, W.-W. Wan, X.-S. Qian, R.-C. Yin, and Y.-F. Chen, “Tunable one-way cross-waveguide splitter based on gyromagnetic photonic crystal,” Appl. Phys. Lett. 96(11), 111111 (2010). [CrossRef]
  5. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys. 76(4), 2023–2025 (1994). [CrossRef]
  6. M. Soljacić, C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28(8), 637–639 (2003). [CrossRef] [PubMed]
  7. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010). [CrossRef]
  8. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterilas,” Phys. Rev. Lett. 104(25), 253902 (2010). [CrossRef]
  9. J.-Y. Chen and L.-W. Chen, “Color separating with integrated photonic band-gap optical diodes: a numerical study,” Opt. Express 14(22), 10733–10739 (2006). [CrossRef] [PubMed]
  10. G. Shvets, “Optical polarizer/isolator based on rectangular waveguide with helical grooves,” Appl. Phys. Lett. 89(14), 141127 (2006). [CrossRef]
  11. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009). [CrossRef]
  12. S. K. Ibrahim, S. Bhandare, D. Sandel, H. Zhang, and R. Noe, “Non-magnetic 30dB integrated opical isolator in III/Vmaterial,” Electron. Lett. 40(20), 1293–1294 (2004). [CrossRef]
  13. K. Inoue and K. Ohtaka, Eds., Photonic Crystals. Physics, Fabrication, and Applications (Springer, Berlin, 2004).
  14. A. E. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B 80(15), 155117 (2009). [CrossRef]
  15. A. O. Cakmak, E. Colak, A. E. Serebryannikov, and E. Ozbay, “Unidirectional transmission in photonic-crystal gratings at beam-type illumination,” Opt. Express 18(21), 22283–22298 (2010). [CrossRef] [PubMed]
  16. X.-F. Li, X. Ni, L. Feng, M.-H. Lu, C. He, and Y. F. Chen, “Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode,” Phys. Rev. Lett. 106(8), 084301 (2011). [CrossRef] [PubMed]
  17. C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36(23), 4668–4670 (2011). [CrossRef] [PubMed]
  18. K. Xiu-Bao, T. Wei, W. Zhan-Shan, W. Zhi-Guo, and C. Hong, “High efficiency one-way transmission by one-dimensional photonic crystals with graings on one side,” Chin. Phys. Lett. 27(7), 074204 (2010). [CrossRef]
  19. M. Beruete, A. E. Serebryannikov, V. Torres, M. Navarro-Cia, and M. Sorolla, “Toward compact millimeter-wave diode in thin stacked hole array assisted by a dielectric grating,” Appl. Phys. Lett. 99(15), 154101 (2011). [CrossRef]
  20. S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010). [CrossRef] [PubMed]
  21. S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011). [CrossRef]
  22. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71(8), 085106 (2005). [CrossRef]
  23. A. E. Serebryannikov, A. Y. Petrov, and E. Ozbay, “Toward photonic crystal based spatial filters with wide angle ranges of total transmission,” Appl. Phys. Lett. 94(18), 181101 (2009). [CrossRef]
  24. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002). [CrossRef]
  25. T. Magath and A. E. Serebryannikov, “Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs,” J. Opt. Soc. Am. A 22(11), 2405–2418 (2005). [CrossRef] [PubMed]
  26. See, www.cst.com .
  27. A. E. Serebryannikov and E. Ozbay, “Unidirectional transmission in non-symmetric gratings containing metallic layers,” Opt. Express 17(16), 13335–13345 (2009). [CrossRef] [PubMed]
  28. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  29. B. T. Schwartz and R. Piestun, “Total external reflection from metamaterial with ultralow refraction index,” J. Opt. Soc. Am. B 20(12), 2448–2453 (2003). [CrossRef]
  30. D. Schurig and D. R. Smith, “Spatial filtering using media with indefinite permittivity and permeability tensors,” Appl. Phys. Lett. 82(14), 2215–2217 (2003). [CrossRef]
  31. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, Cambridge, MA, USA, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited