OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15015–15023

Bragg reflection waveguide as a source of wavelength-multiplexed polarization-entangled photon pairs

Jiří Svozilík, Martin Hendrych, and Juan P. Torres  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15015-15023 (2012)
http://dx.doi.org/10.1364/OE.20.015015


View Full Text Article

Enhanced HTML    Acrobat PDF (971 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We put forward a new highly efficient source of paired photons entangled in polarization with an ultra-large bandwidth. The photons are generated by means of a conveniently designed spontaneous parametric down-conversion process in a semiconductor type-II Bragg reflection waveguide. The proposed scheme aims at being a key element of an integrated source of polarization-entangled photon pairs highly suitable for its use in a multi-user quantum-key-distribution system.

© 2012 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

History
Original Manuscript: April 12, 2012
Revised Manuscript: June 6, 2012
Manuscript Accepted: June 6, 2012
Published: June 20, 2012

Citation
Jiří Svozilík, Martin Hendrych, and Juan P. Torres, "Bragg reflection waveguide as a source of wavelength-multiplexed polarization-entangled photon pairs," Opt. Express 20, 15015-15023 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15015


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett.96, 010503 (2006). [CrossRef] [PubMed]
  2. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A59, 4249–4254 (1999). [CrossRef]
  3. G. Ribordy, J. Brendel, J. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A63, 012309 (2000). [CrossRef]
  4. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67, 661–663 (1991). [CrossRef] [PubMed]
  5. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999). [CrossRef]
  6. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993). [CrossRef] [PubMed]
  7. T. S. Humble and W. P. Grice, “Spectral effects in quantum teleportation,” Phys. Rev. A75, 022307 (2007). [CrossRef]
  8. H. Hubel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorunser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express15, 7853–7862 (2007). [CrossRef] [PubMed]
  9. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys.11, 105001 (2009). [CrossRef]
  10. A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A66, 053805 (2002). [CrossRef]
  11. J. H. Shapiro and F. N. Wong, “On-demand single-photon generation using a modular array of parametric down-converters with electro-optic polarization controls,” Opt. Lett.32, 2698–2700 (2007). [CrossRef] [PubMed]
  12. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express15, 15377–15386 (2007). [CrossRef] [PubMed]
  13. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Wavelength-multiplexed distribution of highly entangled photon-pairs over optical fiber,” Opt. Express26, 22099–22104 (2008). [CrossRef]
  14. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Lett.34, 9460–9467 (2009).
  15. K. Thyagarajan, R. Das, O. Alibart, M. Micheli, D. B. Ostrowsky, and S. Tanzilli, “Increased pump acceptance bandwidth in spontaneous parametric downconversion process using Bragg reflection waveguides,” Opt. Express16, 3577–3582 (2008). [CrossRef] [PubMed]
  16. D. Kang and A. S. Helmy, “Generation of polarization entangled photons using concurrent type-I and type-0 processes in AlGaAs ridge waveguides,” Opt. Lett.37, 1481–1483 (2012). [CrossRef] [PubMed]
  17. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14, 2268–2294 (1997). [CrossRef]
  18. B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett.34, 3734–3736 (2009). [CrossRef] [PubMed]
  19. R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett.108, 153605 (2012). [CrossRef] [PubMed]
  20. A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguides,” Opt. Lett.32, 2399–2401 (2007). [CrossRef] [PubMed]
  21. J. P. Torres, K. Banaszek, and I. A. Walmsley, “Engineering nonlinear optic sources of photonic entanglement,” Prog. Opt.56, 227–331 (2011). [CrossRef]
  22. S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A85, 013838 (2012). [CrossRef]
  23. J. P. Torres, M. Hendrych, and A. Valencia, “Angular dispersion: an enabling tool in nonlinear and quantum optics,” Adv. Opt. Photon.2, 319–369 (2010). [CrossRef]
  24. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley-IEEE Press, 2002).
  25. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthan, and H. Sigg, “The refractive index of Al(x)Ga(1–x)As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys.87, 7825–7837 (2000). [CrossRef]
  26. A. Ling, A. Lamas-Linares, and C. Kurtsiefer, “Absolute emission rates of spontaneous parametric down-conversion into single transverse Gaussian modes,” Phys. Rev. A77, 043834 (2008). [CrossRef]
  27. S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett.78, 5022–5025 (1997). [CrossRef]
  28. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett.80, 2245–2248 (1998). [CrossRef]
  29. T. Yu and J. H. Eberly, “Quantum open system theory: bipartite aspects,” Phys. Rev. Lett.97, 140403 (2006). [CrossRef] [PubMed]
  30. Y Kim and W. P. Grice, “Reliability of the beam-splitterbased Bell-state measurement,” Phys. Rev. A68, 062305 (2003). [CrossRef]
  31. P. P. Rohde and T. C. Ralph, “Frequency and temporal effects in linear optical quantum computing,” Phys. Rev. A71, 032320 (2005). [CrossRef]
  32. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt.9, 47–74 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited