OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15024–15034

Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons

Zeinab Mohammadi, Cole P. Van Vlack, Stephen Hughes, Jens Bornemann, and Reuven Gordon  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15024-15034 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (883 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The theory of vortex electron beam electron energy loss spectroscopy (EELS), or vortex-EELS for short, is presented. This theory is applied, using Green function calculations within the finite-difference time-domain method, to calculate spatially resolved vortex-EELS maps of a metal split ring resonator (SRR). The vortex-EELS scattering cross section for the SRR structure is within an order of magnitude of conventional EELS typically for metal nanoparticles. This is promising in terms of feasibility for future measurements to map out the local magnetic response of metal nanostructures and to characterize their magnetic plasmon response in applications, including metamaterials.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6330) Spectroscopy : Spectroscopy, inelastic scattering including Raman
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

Original Manuscript: April 13, 2012
Revised Manuscript: May 25, 2012
Manuscript Accepted: June 11, 2012
Published: June 20, 2012

Zeinab Mohammadi, Cole P. Van Vlack, Stephen Hughes, Jens Bornemann, and Reuven Gordon, "Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons," Opt. Express 20, 15024-15034 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media8, (Pergamon Press, 1984).
  2. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1, 224–227 (2007). [CrossRef]
  3. A. Alu and N. Engheta, “Cloaking and transparency for collections of particles with metamaterial and plasmonic covers,” Opt. Express15, 7578–7590 (2007). [CrossRef] [PubMed]
  4. B. Kanté, A. de Lustrac, J. M. Lourtioz, and S. N. Burokur, “Infrared cloaking based on the electric response of split ring resonators,” Opt. Express16, 9191–9198 (2008). [CrossRef] [PubMed]
  5. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004). [CrossRef] [PubMed]
  6. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30, 3356–3358 (2005). [CrossRef]
  7. R. Merlin, “Metamaterials and the Landau-Lifshitz permeability argument: Large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A.106, 1693–1698 (2009). [CrossRef] [PubMed]
  8. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1, 41–48 (2007). [CrossRef]
  9. R. Marqués, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett.89, 183901 (2002). [CrossRef] [PubMed]
  10. A. Alu and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express17, 5723–5730 (2009). [CrossRef] [PubMed]
  11. A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E73, 036609 (2006). [CrossRef]
  12. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306, 1351–1353 (2004). [CrossRef] [PubMed]
  13. A. N. Grigorenko, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature438, 335 (2005). [CrossRef] [PubMed]
  14. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005). [CrossRef] [PubMed]
  15. A. W. Blackstock, R. H. Ritchie, and R. D. Birkhoff, “Mean free path for discrete electron energy losses in metallic foils,” Phys. Rev.100, 1078–1083 (1955). [CrossRef]
  16. E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev.120, 130–136 (1960). [CrossRef]
  17. P. Batson, “Inelastic scattering of fast electrons in clusters of small spheres,” Surf. Sci.156, 720–734 (1985). [CrossRef]
  18. F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett.80, 5180–5183 (1998). [CrossRef]
  19. R. Vincent and J. Silcox, “Dispersion of radiative surface plasmons in aluminum films by electron scattering,” Phys. Rev. Lett.31, 1487–1490 (1973). [CrossRef]
  20. R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized aluminum films,” Phys. Rev. B11, 3116–3123 (1975). [CrossRef]
  21. H. A. Brink, M. M. G. Barfels, R. P. Burgner, and B. N. Edwards, “A sub-50 meV spectrometer and energy filter for use in combination with 200 kv monochromated TEMs,” Ultramicroscopy96, 367–384 (2003). [CrossRef] [PubMed]
  22. B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B79, 041401 (2009). [CrossRef]
  23. W. Zhong, J. Xu, and X. Zhang, “Interaction of fast electron beam with photonic quasicrystals,” Opt. Express17, 13270–13282 (2009). [CrossRef] [PubMed]
  24. U. Hohenester, H. Ditlbacher, and J. R. Krenn, “Electron-energy-loss spectra of plasmonic nanoparticles,” Phys. Rev. Lett.103, 106801 (2009). [CrossRef] [PubMed]
  25. M. NǴom, S. Li, G. Schatz, R. Erni, A. Agarwal, N. Kotov, and T. B. Norris, “Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods,” Phys. Rev. B80, 113411 (2009). [CrossRef]
  26. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82, 209–275 (2010). [CrossRef]
  27. A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett.11, 1323–1330 (2011). [CrossRef] [PubMed]
  28. M. W. Chu, V. Myroshnychenko, C. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled nobel metal nanoparticles using an electron beam,” Nano Lett.1, 399–404 (2009). [CrossRef]
  29. M. Uchida and A. Tonomura, “Generatio of electron beams carrying orbital angular momentum,” Nature464, 737–739 (2010). [CrossRef] [PubMed]
  30. J. Verbeeck, H. Tian, and P. Schattschneider, “Production and application of electron vortex beams,” Nature467, 301–304 (2010). [CrossRef] [PubMed]
  31. K. Y. Bliokh, Y. P. Bliokh, S. Savelév, and F. Nori, “Semiclassical dynamics of electron wave packet states with phase vortices,” Phys. Rev. Lett.99, 190404 (2007).
  32. B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett.99, 087701 (2007). [CrossRef] [PubMed]
  33. F. J. García de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett.100, 106804 (2008). [CrossRef] [PubMed]
  34. P. E. Mayes, “The equivalence of electric and magnetic sources,” IEEE Trans. Antennas Propag.6, 295–296 (1958). [CrossRef]
  35. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  36. P. Schattschneider and J. Verbeeck, “Theory of free electron vortices,” Ultramicroscopy111, 1461–1468 (2011). [CrossRef] [PubMed]
  37. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82, 209–275 (2010). [CrossRef]
  38. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  39. C. P. Van Vlack and S. Hughes, “Finite-difference time domain technique as an efficient tool for obtaining the regularized green function: applications to the local field problem in quantum optics for inhomogeneous lossy materials,” Opt. Lett. (submitted) (2012). [PubMed]
  40. B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science331, 192–195 (2011). [CrossRef] [PubMed]
  41. R. F. Egerton, Electron Energy loss Spectroscopy in the Electron Microscope (Springer, 2011). [CrossRef]
  42. G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, F. J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett.105, 255501 (2010). [CrossRef]
  43. C. Rockstuhl, F. Lederer, C. Etrich, S. Linden, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14, 8827–8836 (2006). [CrossRef] [PubMed]
  44. K. Joulain, R. Carminati, J. P. Mulet, and J. J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B68, 245405 (2003). [CrossRef]
  45. P. Schattschneider, M. Stöger-Pollach, S. Löffler, A. Steiger-Thirsfeld, J. Hell, and J. Verbeeck, “Sub-nanometer free electrons with topological charge,” Ultramicroscopy115, 21–25 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (2170 KB)     
» Media 2: MPG (2286 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited