OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15093–15099

High speed silicon Mach-Zehnder modulator based on interleaved PN junctions

Hao Xu, Xi Xiao, Xianyao Li, Yingtao Hu, Zhiyong Li, Tao Chu, Yude Yu, and Jinzhong Yu  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15093-15099 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2023 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high speed silicon Mach-Zehnder modulator is proposed based on interleaved PN junctions. This doping profile enabled both high modulation efficiency of VπLπ = 1.5~2.0 V·cm and low doping-induced loss of ~10 dB/cm by applying a relatively low doping concentration of 2 × 1017 cm−3. High speed operation up to 40 Gbit/s with 7.01 dB extinction ratio was experimentally demonstrated with a short phase shifter of only 750 μm.

© 2012 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:

Original Manuscript: May 8, 2012
Revised Manuscript: June 8, 2012
Manuscript Accepted: June 10, 2012
Published: June 20, 2012

Hao Xu, Xi Xiao, Xianyao Li, Yingtao Hu, Zhiyong Li, Tao Chu, Yude Yu, and Jinzhong Yu, "High speed silicon Mach-Zehnder modulator based on interleaved PN junctions," Opt. Express 20, 15093-15099 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol.23(6), 064001 (2008). [CrossRef]
  2. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010). [CrossRef]
  3. L. Chen, C. R. Doerr, P. Dong, and Y. K. Chen, “Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing,” Opt. Express19(26), B946–B951 (2011). [CrossRef] [PubMed]
  4. G. Kim, J. W. Park, I. G. Kim, S. Kim, S. Kim, J. M. Lee, G. S. Park, J. Joo, K. S. Jang, J. H. Oh, S. A. Kim, J. H. Kim, J. Y. Lee, J. M. Park, D. W. Kim, D. K. Jeong, M. S. Hwang, J. K. Kim, K. S. Park, H. K. Chi, H. C. Kim, D. W. Kim, and M. H. Cho, “Low-voltage high-performance silicon photonic devices and photonic integrated circuits operating up to 30 Gb/s,” Opt. Express19(27), 26936–26947 (2011). [CrossRef] [PubMed]
  5. X. Tu, T. Y. Liow, J. Song, M. Yu, and G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express19(19), 18029–18035 (2011). [CrossRef] [PubMed]
  6. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron.16(1), 159–164 (2010). [CrossRef]
  7. Z. Y. Li, D. X. Xu, W. R. McKinnon, S. Janz, J. H. Schmid, P. Cheben, and J. Z. Yu, “Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions,” Opt. Express17(18), 15947–15958 (2009). [CrossRef] [PubMed]
  8. X. Xiao, H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions,” Opt. Express20(3), 2507–2515 (2012). [CrossRef] [PubMed]
  9. M. Ziebell, D. Marris-Morini, G. Rasigade, P. Crozat, J.-M. Fédéli, P. Grosse, E. Cassan, and L. Vivien, “Ten Gbit/s ring resonator silicon modulator based on interdigitated PN junctions,” Opt. Express19(15), 14690–14695 (2011). [CrossRef] [PubMed]
  10. H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express20(12), 12926–12938 (2012). [CrossRef]
  11. N. N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4 V-cm VπL integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express18(8), 7994–7999 (2010). [CrossRef] [PubMed]
  12. D.Feng, D. Zheng, and T. Smith, “Traveling-wave high-speed silicon modulator,” Integrated Photon. Res. Appl.(IPRA), ITUB4 (2006).
  13. Y. R. Kwon, V. M. Hietala, and K. S. Champlin, “Quasi-TEM analysis of‘slow-wave’ mode propagation on coplanar microstructure MIS transmission lines,” IEEE Trans. Microw. Theory Tech.35(6), 545–551 (1987). [CrossRef]
  14. V. Milanovic, M. Ozgur, D. C. DeGroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, “Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates,” IEEE Trans. Microw. Theory Tech.46(5), 632–640 (1998). [CrossRef]
  15. L. Reinhold and B. Pavel, RF Circuit Design: Theory and Applications(PrenticeHall, 2000).
  16. A. M. Mangan, S. P. Voinigescu, M. T. Yang, and M. Tazlauanu, “De-embedding transmission line measurements for accurate modeling of IC designs,” IEEE Trans. Electron. Dev.53(2), 235–241 (2006). [CrossRef]
  17. http://www.silvaco.com/
  18. D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express20(S2Suppl 2), A293–A308 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited