OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15126–15138

Modulation of propagation-invariant Localized Waves for FSO communication systems

Mohamed A. Salem and Hakan Bağcı  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15126-15138 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1263 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The novel concept of spatio-temporal modulation of Nyquist pulses is introduced, and the resulting wave-packets are termed Nyquist Localized Waves (LWs). Ideal Nyquist LWs belong to the generic family of LW solutions and can propagate indefinitely in unbounded media without attenuation or chromatic dispersion. The possibility of modulating Nyquist LWs for free-space optical (FSO) communication systems is demonstrated using two different modulation techniques. The first technique is on-off keying (OOK) with alternate mark inversion (AMI) coding for 1-bit per symbol transmission, and the second one is 16-ary quadrature amplitude modulation (16-QAM) for 4-bits per symbol transmission. Aspects related to the performance, detection and generation of the spatio-temporally coupled wave-packets are discussed and future research directions are outlined.

© 2012 OSA

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(070.6110) Fourier optics and signal processing : Spatial filtering
(320.5540) Ultrafast optics : Pulse shaping
(060.2605) Fiber optics and optical communications : Free-space optical communication
(070.2615) Fourier optics and signal processing : Frequency filtering
(070.3185) Fourier optics and signal processing : Invariant optical fields

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 26, 2012
Revised Manuscript: May 28, 2012
Manuscript Accepted: June 7, 2012
Published: June 21, 2012

Mohamed A. Salem and Hakan Bağcı, "Modulation of propagation-invariant Localized Waves for FSO communication systems," Opt. Express 20, 15126-15138 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol.24, 4750–4762 (2006). [CrossRef]
  2. E. J. Lee and V. W. S. Chan, “Part 1: Optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun.22, 1896–1906 (2004). [CrossRef]
  3. E. Shin and V. W. S. Chan, “Optical communication over the turbulent atmospheric channel using spatial diversity,” in “IEEE GLOBECOM ’02,” (2002) 3, 2055–2060. [PubMed]
  4. H. Hemmati, Deep Space Optical Communications (Wiley, 2006). [CrossRef]
  5. V. W. S. Chan, “Optical satellite networks,” J. Lightwave Technol.21, 2811–2827 (2003). [CrossRef]
  6. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum.82, 071101 (2011). [CrossRef] [PubMed]
  7. E. J. Lee and V. W. Chan, “Diversity coherent and incoherent receivers for free-space optical communication in the presence and absence of interference,” J. Opt. Commun. Netw.1, 463–483 (2009). [CrossRef]
  8. N. Cvijetic, D. Qian, J. Yu, Y.-K. Huang, and T. Wang, “Polarization-multiplexed optical wireless transmission with coherent detection,” J. Lightwave Technol.28, 1218–1227 (2010). [CrossRef]
  9. A. Belmonte and J. M. Kahn, “Field conjugation adaptive arrays in free-space coherent laser communications,” J. Opt. Commun. Netw.3, 830–838 (2011). [CrossRef]
  10. H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, eds., Localized Waves (Wiley, 2008). [CrossRef]
  11. E. Recami, “Superluminal waves and objects: an overview of the relevant experiments,” J. Phys.: Conf. Ser.196, 012020 (2009). [CrossRef]
  12. L. A. Ambrosio, M. Zamboni-Rached, and H. E. Hernández-Figueroa, “Diffraction-Attenuation Resistant Beams,” in “Applications of Lasers for Sensing and Free Space Communications,” (Optical Society of America, 2011), LWD4.
  13. A. M. Shaarawi, A. S. El-Halawani, and I. M. Besieris, “Diffraction of spatiotemporally localized X-wave pulses from a screen containing two rectangular slits,” J. Opt. Soc. Am. A28, 534–540 (2011). [CrossRef]
  14. M. A. Salem and H. Bağcı, “Reflection and transmission of normally incident full-vector X waves on planar interfaces,” J. Opt. Soc. Am. A29, 139–152 (2012). [CrossRef]
  15. M. A. Salem and H. Bağcı, “On the propagation of truncated Localized Waves in dispersive silica,” Opt. Express18, 25482–25493 (2010). [CrossRef] [PubMed]
  16. J. N. Brittingham, “Focus waves modes in homogeneous Maxwell’s equations: Transverse electric mode,” J. Appl. Phys.54, 1179–1189 (1983). [CrossRef]
  17. R. W. Ziolkowski, “Localized transmission of electromagnetic energy,” Phys. Rev. A39, 2005–2033 (1989). [CrossRef] [PubMed]
  18. J.-Y. Lu and J. F. Greenleaf, “Nondiffracting X waves – exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39, 19–31 (1992). [CrossRef] [PubMed]
  19. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A4, 651–654 (1987). [CrossRef]
  20. I. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski, “A bidirectional traveling plane representation of exact solutions of the scalar wave equation,” J. Math. Phys.30, 1254–1269 (1989). [CrossRef]
  21. S. S. Assimonis, M. Matthaiou, G. K. Karagiannidis, and J. A. Nossek, “Improved parametric families of intersymbol interference-free Nyquist pulses using inner and outer functions,” IET Signal Process.5, 157–163 (2011). [CrossRef]
  22. S. Haykin, Communication Systems, 4th ed. (Wiley, 2001).
  23. J.-Y. Lu and A. Liu, “An X wave transform,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control47, 1472–1481 (2000). [CrossRef]
  24. J. Salo, A. T. Friberg, and M. Salomaa, “Orthogonal X waves,” J. Phys. A: Math. Gen.34, 9319–9327 (2001). [CrossRef]
  25. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Bäuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express20, 317–337 (2012). [CrossRef] [PubMed]
  26. R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, and J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express20, 6439–6447 (2012). [CrossRef] [PubMed]
  27. M. Zamboni-Rached, “Analytical expressions for the longitudinal evolution of nondiffracting pulses truncated by finite apertures,” J. Opt. Soc. Am. A23, 2166–2176 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited