OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15222–15231

Measurement of surface plasmon correlation length differences using Fibonacci deterministic hole arrays

Tho Duc Nguyen, Ajay Nahata, and Z. Valy Vardeny  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15222-15231 (2012)
http://dx.doi.org/10.1364/OE.20.015222


View Full Text Article

Enhanced HTML    Acrobat PDF (966 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using terahertz (THz) transmission measurements through two-dimensional Fibonacci deterministic subwavelength hole arrays fabricated in metal foils, we find that the surface plasmon-polariton (SPP) correlation lengths for aperiodic resonances are smaller than those associated with the underlying grid. The enhanced transmission spectra associated with these arrays contain two groups of Fano-type resonances: those related to the two-dimensional Fibonacci structure and those related to the underlying hole grid array upon which the aperiodic Fibonacci array is built. For both groups the destructive interference frequencies at which transmission minima occur closely match prominent reciprocal vectors in the hole array (HA) structure-factor in reciprocal space. However the Fibonacci-related transmission resonances are much weaker than both their calculated Fourier intensity in k space and the grid-related resonances. These differences may arise from the complex, multi-fractal dispersion relations and scattering from the underlying grid arrays. We also systematically studied and compared the transmission resonance strength of Fibonacci HA and periodic HA lattices as a function of the number of holes in the array structure. We found that the Fibonacci-related resonance strengths are an order of magnitude weaker than that of the periodic HA, consistent with the smaller SPP correlation length for the aperiodic structure.

© 2012 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6680) Optics at surfaces : Surface plasmons
(260.3090) Physical optics : Infrared, far
(160.1245) Materials : Artificially engineered materials

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 14, 2012
Revised Manuscript: June 13, 2012
Manuscript Accepted: June 14, 2012
Published: June 22, 2012

Citation
Tho Duc Nguyen, Ajay Nahata, and Z. Valy Vardeny, "Measurement of surface plasmon correlation length differences using Fibonacci deterministic hole arrays," Opt. Express 20, 15222-15231 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15222


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002). [CrossRef] [PubMed]
  3. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  4. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007). [CrossRef] [PubMed]
  5. A. Agrawal, T. Matsui, W. Zhu, A. Nahata, and Z. V. Vardeny, “Terahertz spectroscopy of plasmonic fractals,” Phys. Rev. Lett.102(11), 113901 (2009). [CrossRef] [PubMed]
  6. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?” Phys. Rev. Lett.87(16), 167401 (2001). [CrossRef] [PubMed]
  7. D. Mayou, C. Berger, F. Cyrot-Lackmann, T. Klein, and P. Lanco, “Evidence for unconventional electronic transport in quasicrystals,” Phys. Rev. Lett.70(25), 3915–3918 (1993). [CrossRef] [PubMed]
  8. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett.58(23), 2436–2438 (1987). [CrossRef] [PubMed]
  9. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett.72(5), 633–636 (1994). [CrossRef] [PubMed]
  10. R. W. Peng, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang, and M. Mazzer, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett.80(17), 3063–3065 (2002). [CrossRef]
  11. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express16(8), 5544–5555 (2008). [CrossRef] [PubMed]
  12. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express17(5), 3741–3753 (2009). [CrossRef] [PubMed]
  13. R. Lifshitz, “The square Fibonacci tiling,” J. Alloy. Comp.342(1-2), 186–190 (2002). [CrossRef]
  14. X. Fu, Y. Liu, B. Cheng, and D. Zheng, “Spectral structure of two-dimensional Fibonacci quasilattices,” Phys. Rev. B Condens. Matter43(13), 10808–10814 (1991). [CrossRef] [PubMed]
  15. L. D. Negro, N. Feng, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A, Pure Appl. Opt.10(6), 064013 (2008). [CrossRef]
  16. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961). [CrossRef]
  17. A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010). [CrossRef]
  18. A. Agrawal, Z. V. Vardeny, and A. Nahata, “Engineering the dielectric function of plasmonic lattices,” Opt. Express16(13), 9601–9613 (2008). [CrossRef] [PubMed]
  19. F. Przybilla, C. Genet, and T. W. Ebbesen, “Long vs. short-range orders in random subwavelength hole arrays,” Opt. Express20(4), 4697–4709 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited