OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15232–15246

Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths

Shiyang Zhu, G. Q. Lo, and D. L. Kwong  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15232-15246 (2012)
http://dx.doi.org/10.1364/OE.20.015232


View Full Text Article

Enhanced HTML    Acrobat PDF (2007 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultracompact Cu-capped Si hybrid plasmonic waveguide-ring resonators (WRRs) with ring radii of 1.09–2.59 μm are fabricated on silicon on insulator substrates using standard complementary metal-oxide-semiconductor technology and characterized over the telecom wavelength range of 1.52–1.62 μm. The dependence of the spectral characteristics on the key structural parameters such as the Si core width, the ring radius, the separation gap between the ring and bus waveguides, and the ring configuration is systematically studied. A WRR with 2.59-μm radius and 0.250-μm nominal gap exhibits good performances such as normalized insertion loss of ~0.1 dB, extinction ratio of ~12.8 dB, free spectral range of ~47 nm, and quality factor of ~275. The resonance wavelength is redshifted by ~4.6 nm and an extinction ratio of ~7.5 dB is achieved with temperature increasing from 27 to 82°C. The corresponding effective thermo-optical coefficient (dng/dT) is estimated to be ~1.6 × 10−4 K−1, which is contributed by the thermo-optical effect of both the Si core and the Cu cap, as revealed by numerical simulations. Combined with the compact size and the high thermal conductivity of Cu, various effective thermo-optical devices based on these Cu-capped plasmonic WRRs could be realized for seamless integration in existing Si electronic-photonic integrated circuits.

© 2012 OSA

OCIS Codes
(160.6840) Materials : Thermo-optical materials
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: March 26, 2012
Revised Manuscript: May 5, 2012
Manuscript Accepted: May 8, 2012
Published: June 22, 2012

Citation
Shiyang Zhu, G. Q. Lo, and D. L. Kwong, "Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths," Opt. Express 20, 15232-15246 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15232


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  2. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  3. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011). [CrossRef]
  4. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguide,” Phys. Rev. B75(24), 245405 (2007). [CrossRef]
  5. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  6. R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top.Quant. Electron.14, 1496–1501 (2008).
  7. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  8. H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010). [CrossRef]
  9. H. S. Chu, Y. A. Akimov, P. Bai, and E. P. Li, “Hybrid dielectric-loaded plasmonic waveguide and wavelength selective components for efficiently controlling light at subwavelength scale,” J. Opt. Soc. Am. B28(12), 2895–2901 (2011). [CrossRef]
  10. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components as subwavelength scale,” Opt. Express18(11), 11728–11736 (2010). [CrossRef] [PubMed]
  11. I. Goykhman, B. Desiatov, and B. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97(14), 141106 (2010). [CrossRef]
  12. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011). [CrossRef] [PubMed]
  13. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of hybrid plasmonic waveguide components into a fully CMOS-compatible SOI platform,” IEEE Photon. Technol. Lett. (Accepted).
  14. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6(1), 47–73 (2012). [CrossRef]
  15. S. Randhawa, S. Lachèze, J. Renger, A. Bouhelier, R. E. de Lamaestre, A. Dereux, and R. Quidant, “Performance of electro-optical plasmonic ring resonators at telecom wavelengths,” Opt. Express20(3), 2354–2362 (2012). [CrossRef] [PubMed]
  16. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10(12), 4851–4857 (2010). [CrossRef] [PubMed]
  17. H. Hassan, J.-C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys.110(2), 023106 (2011). [CrossRef]
  18. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457(7228), 455–458 (2009). [CrossRef] [PubMed]
  19. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicron radius,” IEEE Photon. Technol. Lett.23(24), 1896–1898 (2011). [CrossRef]
  20. S. Y. Zhu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides,” Opt. Express17(23), 20891–20899 (2009). [CrossRef] [PubMed]
  21. S. Roberts, “Optical properties of copper,” Phys. Rev.118(6), 1509–1518 (1960). [CrossRef]
  22. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000). [CrossRef]
  23. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express18(26), 27802–27819 (2010). [CrossRef] [PubMed]
  24. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides,” Opt. Express20(6), 5867–5881 (2012). [CrossRef] [PubMed]
  25. S. Y. Seo, J. Lee, J. H. Shin, E. S. Kang, and B. S. Bae, “The thermo-optic effect of Si nanocrystals in silicon-rich silicon oxide thin films,” Appl. Phys. Lett.85(13), 2526–2528 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited