OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15286–15300

Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method

Haiyun Xia, Xiankang Dou, Dongsong Sun, Zhifeng Shu, Xianghui Xue, Yan Han, Dongdong Hu, Yuli Han, and Tingdi Cheng  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15286-15300 (2012)
http://dx.doi.org/10.1364/OE.20.015286


View Full Text Article

Enhanced HTML    Acrobat PDF (2890 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A mobile Rayleigh Doppler lidar based on double-edge technique is developed for mid-altitude wind observation. To reduce the systematic error, a system-level optical frequency control method is proposed and demonstrated. The emission of the seed laser at 1064 nm is used to synchronize the FPI in the optical frequency domain. A servo loop stabilizing the frequency of the seed laser is formed by measuring the absolute frequency of the second harmonic against an iodine absorption line. And, the third harmonic is used for Rayleigh lidar detection. The frequency stability is 1.6 MHz at 1064 nm over 2 minutes. A locking accuracy of 0.3 MHz at 1064 nm is realized. In comparison experiments, wind profiles from the lidar, radiosonde and European Center for Medium range Weather Forecast (ECMWF) analysis show good agreement from 8 km to 25 km. Wind observation over two months is carried out in Urumqi ( 42.1°N, 87.1°E ), northwest of China, demonstrating the stability and robustness of the system. For the first time, quasi-zero wind layer and dynamic evolution of high-altitude tropospheric jet are observed based on Rayleigh Doppler lidar in Asia.

© 2012 OSA

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing

History
Original Manuscript: April 27, 2012
Revised Manuscript: May 27, 2012
Manuscript Accepted: May 30, 2012
Published: June 22, 2012

Citation
Haiyun Xia, Xiankang Dou, Dongsong Sun, Zhifeng Shu, Xianghui Xue, Yan Han, Dongdong Hu, Yuli Han, and Tingdi Cheng, "Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method," Opt. Express 20, 15286-15300 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15286


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc.86(1), 73–87 (2005). [CrossRef]
  2. P. Hays, M. Dehring, L. Fisk, P. Tchoryk, I. Dors, J. Ryan, J. Wang, M. Hardesty, B. Gentry, and F. Hovis, “Space-based Doppler winds lidar: a vital national need,” In response to national research council (NRC) decadal study request for information (RFI), May (2005).
  3. European Space Agency ESA, ADM-Aeolus science report: ESA SP-1311 (ESA Communication Production Office, 2008).
  4. R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE84(2), 181–204 (1996). [CrossRef]
  5. H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt.46(29), 7120–7131 (2007). [CrossRef] [PubMed]
  6. C. L. Korb, B. M. Gentry, S. X. Li, and C. Flesia, “Theory of the double-edge technique for Doppler lidar wind measurement,” Appl. Opt.37(15), 3097–3104 (1998). [CrossRef] [PubMed]
  7. C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt.38(3), 432–440 (1999). [CrossRef] [PubMed]
  8. Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, and C. Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt.41(33), 7079–7086 (2002). [CrossRef] [PubMed]
  9. J. A. McKay, “Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar,” Appl. Opt.41(9), 1760–1767 (2002). [CrossRef] [PubMed]
  10. D. Bruneau, A. Garnier, A. Hertzog, and J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach-Zehnder interferometer, comparison with a Fabry-Perot interferometer,” Appl. Opt.43(1), 173–182 (2004). [CrossRef] [PubMed]
  11. N. Cézard, A. Dolfi-Bouteyre, J. P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh-Mie lidar,” Appl. Opt.48(12), 2321–2332 (2009). [CrossRef] [PubMed]
  12. O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol.26(12), 2501–2515 (2009). [CrossRef]
  13. U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol.26(12), 2516–2530 (2009). [CrossRef]
  14. M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett.16(11), 1273–1276 (1989). [CrossRef]
  15. A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B55(1), 35–40 (1992). [CrossRef]
  16. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt.38(12), 2410–2421 (1999). [CrossRef] [PubMed]
  17. C. Souprayen, A. Garnier, and A. Hertzog, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration,” Appl. Opt.38(12), 2422–2431 (1999). [CrossRef] [PubMed]
  18. C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res.99(D12), 25781–25790 (1994). [CrossRef]
  19. J. S. Friedman, C. A. Tepley, P. A. Castleberg, and H. Roe, “Middle-atmospheric Doppler lidar using an iodine-vapor edge filter,” Opt. Lett.22(21), 1648–1650 (1997). [CrossRef] [PubMed]
  20. D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys.58(16), 1827–1842 (1996). [CrossRef]
  21. U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys.18, 815–833 (2000).
  22. G. Baumgarten, “Doppler Rayleigh Mie Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km,” Atmos. Meas. Tech. Discuss.3(6), 1509–1518 (2010). [CrossRef]
  23. W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett.34(10), 1552–1554 (2009). [PubMed]
  24. B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355-nm molecular Doppler lidar,” Opt. Lett.25(17), 1231–1233 (2000). [CrossRef] [PubMed]
  25. F. Shen, H. Hyunki Cha, J. Dong, D. Kim, D. Sun, and S. O. Kwon, “Design and performance simulation of a molecular Doppler wind lidar,” Chin. Opt. Lett.7(7), 593–597 (2009). [CrossRef]
  26. T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B87(3), 437–444 (2007). [CrossRef]
  27. K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE6451, 1–12 (2007).
  28. F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE5332, 263–270 (2004). [CrossRef]
  29. H. Xia and J. Yao, “Characterization of sub-picosecond pulses based on temporal interferometry with real-time tracking of higher-order dispersion and optical time delay,” J. Lightwave Technol.27(22), 5029–5037 (2009). [CrossRef]
  30. M. S. Fee, K. Danzmann, and S. Chu, “Optical heterodyne measurement of pulsed lasers: Toward high-precision pulsed spectroscopy,” Phys. Rev. A45(7), 4911–4924 (1992). [CrossRef] [PubMed]
  31. M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B96(1), 201–213 (2009). [CrossRef]
  32. L. A. Rahn, “Feedback stabilization of an injection-seeded Nd: YAG laser,” Appl. Opt.24(7), 940–942 (1985). [CrossRef] [PubMed]
  33. F. T. S. Yu and S. Yin, Fiber Optic Sensors (Marcel Dekker, Inc., New York, 2002), Chap. 5.3.1.
  34. A. T. Young and G. W. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt.22(23), 3668–3670 (1983). [CrossRef] [PubMed]
  35. A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A60(2), 206–215 (2008). [CrossRef]
  36. M. Weissmann and C. Cardinali, “Impact of airborne Doppler lidar observations on ECMWF forecasts,” Q. J. R. Meteorol. Soc.133(622), 107–116 (2007). [CrossRef]
  37. M. Weissmann, R. H. Langland, P. M. Pauley, S. Rahm, and C. Cardinali, “Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts,” Q. J. R. Meteorol. Soc.138, 118–130 (2011). [CrossRef]
  38. K. Mohanakumar, Stratosphere Troposphere Interactions: An Introduction (Springer Science, 2008), Chap.1.
  39. H. Xia and C. Zhang, “Ultrafast ranging lidar based on real-time Fourier transformation,” Opt. Lett.34(14), 2108–2110 (2009). [CrossRef] [PubMed]
  40. H. Xia and C. Zhang, “Ultrafast and Doppler-free femtosecond optical ranging based on dispersive frequency-modulated interferometry,” Opt. Express18(5), 4118–4129 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4118 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited