OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15359–15376

Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding

Joerg Pfeifle, Luca Alloatti, Wolfgang Freude, Juerg Leuthold, and Christian Koos  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15359-15376 (2012)
http://dx.doi.org/10.1364/OE.20.015359


View Full Text Article

Enhanced HTML    Acrobat PDF (3163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A highly efficient phase shifter based on the silicon-organic hybrid (SOH) platform is theoretically investigated and experimentally tested. The device consists of a silicon slot waveguide covered with an organic liquid-crystal (LC) cladding. A record-low voltage-length product of UπL = 0.085 Vmm can be achieved for high-purity materials where an optimum operation point can be set by a DC bias. With standard materials and without a DC bias, we measure a phase shift of 35π with a drive voltage of only 5 V for a 1.7 mm long device corresponding to a voltage-length product of UπL = 0.24 Vmm. The power dissipation is about six orders of magnitude smaller than that of state-of-the-art thermo-optic devices, thereby enabling dense integration of LC phase shifters in advanced photonic integrated circuits.

© 2012 OSA

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Integrated Optics

History
Original Manuscript: April 25, 2012
Revised Manuscript: June 14, 2012
Manuscript Accepted: June 18, 2012
Published: June 25, 2012

Citation
Joerg Pfeifle, Luca Alloatti, Wolfgang Freude, Juerg Leuthold, and Christian Koos, "Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding," Opt. Express 20, 15359-15376 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15359


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol.27(18), 4076–4083 (2009). [CrossRef]
  2. M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express19(1), 47–54 (2011). [CrossRef] [PubMed]
  3. S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011). [CrossRef]
  4. M. Rasras, D. Gill, M. Earnshaw, C. Doerr, J. Weiner, C. Bolle, and Y.-K. Chen, “CMOS silicon receiver integrated with Ge detector and reconfigurable optical filter,” IEEE Photon. Technol. Lett.22(2), 112–114 (2010). [CrossRef]
  5. N. Walker and G. Walker, “Polarization control for coherent communications,” J. Lightwave Technol.8(3), 438–458 (1990). [CrossRef]
  6. C. Doerr, P. Winzer, Y.-K. Chen, S. Chandrasekhar, M. Rasras, L. Chen, T.-Y. Liow, K.-W. Ang, and G.-Q. Lo, “Monolithic polarization and phase diversity coherent receiver in silicon,” J. Lightwave Technol.28(4), 520–525 (2010). [CrossRef]
  7. D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express18(9), 9324–9340 (2010). [CrossRef] [PubMed]
  8. L.-W. Luo, S. Ibrahim, A. Nitkowski, Z. Ding, C. B. Poitras, S. J. Ben Yoo, and M. Lipson, “High bandwidth on-chip silicon photonic interleaver,” Opt. Express18(22), 23079–23087 (2010). [CrossRef] [PubMed]
  9. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express17(25), 22484–22490 (2009). [CrossRef] [PubMed]
  10. A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol.23(6), 064001 (2008). [CrossRef]
  11. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  12. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett.43(22), 1196–1197 (2007). [CrossRef]
  13. J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009). [CrossRef]
  14. B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003). [CrossRef]
  15. W. De Cort, J. Beeckman, T. Claes, K. Neyts, and R. Baets, “Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding,” Opt. Lett.36(19), 3876–3878 (2011). [CrossRef] [PubMed]
  16. I.-C. Khoo, Liquid crystals, 2nd ed. (Wiley-Interscience, 2007).
  17. L. Alloatti, J. Pfeifle, J. Mendez, W. Freude, J. Leuthold, and C. Koos, “Liquid crystal phase shifter on the SOH platform with ultra-low power consumption,” in Optical Fiber Communication Conference (OTu1I.5.), (2012).
  18. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express19(12), 11841–11851 (2011). [CrossRef] [PubMed]
  19. R. Ding, T. Baehr-Jones, W. J. Kim, X. G. Xiong, R. Bojko, J. M. Fedeli, M. Fournier, and M. Hochberg, “Low-loss strip-loaded slot waveguides in silicon-on-insulator,” Opt. Express18(24), 25061–25067 (2010). [CrossRef] [PubMed]
  20. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  21. H. Desmet, K. Neyts, and R. Baets, “Liquid crystal orientation on patterns etched in Silicon on Insulator,” in Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (61831Z), (2006).
  22. CST - Computer Simulation Technology AG, CST Microwave Studio 2012, http://www.cst.com (2012).
  23. C. Desimpel, J. Beeckman, H. Desmet, K. Neyts, R. James, and F. A. Fernández, “A four-electrode liquid crystal device for 2π in-plane director rotation,” J. Phys. D Appl. Phys.38(21), 3976–3984 (2005). [CrossRef]
  24. W. De Cort, J. Beeckman, R. James, F. A. Fernandez, R. Baets, and K. Neyts, “Tuning silicon-on-insulator ring resonators with in-plane switching liquid crystals,” J. Opt. Soc. Am. B28(1), 79–85 (2011). [CrossRef]
  25. RSoft Design Group Inc, FemSIM 3.3 User Guide, http://www.rsoftdesign.com (2011).
  26. P. Mullner and R. Hainberger, “Structural optimization of silicon-on-insulator slot waveguides,” IEEE Photon. Technol. Lett.18(24), 2557–2559 (2006). [CrossRef]
  27. Y.-H. Fan, Y.-H. Lin, H. Ren, S. Gauza, and S.-T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004). [CrossRef]
  28. T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett.92(16), 163303 (2008). [CrossRef]
  29. P. Pagliusi, B. Zappone, G. Cipparrone, and G. Barbero, “Molecular reorientation dynamics due to direct current voltage-induced ion redistribution in undoped nematic planar cell,” J. Appl. Phys.96(1), 218–223 (2004). [CrossRef]
  30. M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE Trans. Microw. Theory Tech.30(10), 1591–1598 (1982). [CrossRef]
  31. T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express19(12), 11529–11538 (2011). [CrossRef] [PubMed]
  32. D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46(5), 762–768 (2010). [CrossRef]
  33. G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley-Interscience, 2010).
  34. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron.12(6), 1306–1321 (2006). [CrossRef]
  35. H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys.98(12), 123517 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited