OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15418–15426

Pumping-power-dependent photoluminescence angular distribution from an opal photonic crystal composed of monodisperse Eu3+/SiO2 core/shell nanospheres

Le Dac Tuyen, Jian Hung Lin, Cheng Yi Wu, Po-Tse Tai, Jau Tang, Le Quoc Minh, Hung-Chih Kan, and Chia Chen Hsu  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15418-15426 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1030 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High quality opal photonic crystals (PhCs) were successfully fabricated by self-assembling of monodisperse Eu3+/SiO2 core/shell nanospheres. Angular resolved photoluminescence (PL) spectra of a PhC sample were measured with different pumping powers, and its PL emission strongly depended on spectroscopic position of the photonic stop band and the optical pumping power. Suppression of the PL occurred in the directions where the emission lines aligned with the center of the photonic stop band. Suppression and enhancement of the PL were observed at low- and high-pumping powers, respectively, in the directions where the emission lines were located at the edges of the photonic stop band. When pumping power exceeded 6 µJ/pulse, a super-linear dependence was found between the pumping power and PL intensity. The dramatic enhancement of PL was attributed to the amplification of spontaneous emission resulted from the creation of large population inversion and the slow group velocity of the emitted light inside the PhC. The opal PhC provided highly angular-selective quasi-monochromatic PL output, which can be useful for a variety of optical applications.

© 2012 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(250.4480) Optoelectronics : Optical amplifiers
(250.5230) Optoelectronics : Photoluminescence
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: May 14, 2012
Manuscript Accepted: June 15, 2012
Published: June 25, 2012

Le Dac Tuyen, Jian Hung Lin, Cheng Yi Wu, Po-Tse Tai, Jau Tang, Le Quoc Minh, Hung-Chih Kan, and Chia Chen Hsu, "Pumping-power-dependent photoluminescence angular distribution from an opal photonic crystal composed of monodisperse Eu3+/SiO2 core/shell nanospheres," Opt. Express 20, 15418-15426 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. López, “Materials aspects of photonic crystals,” Adv. Mater. (Deerfield Beach Fla.)15(20), 1679–1704 (2003). [CrossRef]
  2. K. Sakoda, Optical properties of photonic crystals, 2nd ed. (Springer, 2004).
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  5. K. Kuroda, T. Sawada, T. Kuroda, K. Watanabe, and K. Sakoda, “Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies,” Opt. Express17(15), 13168–13177 (2009). [CrossRef] [PubMed]
  6. L. Frezza, M. Patrini, M. Liscidini, and D. Comoretto, “Directional enhancement of spontaneous emission in polymer flexible microcavities,” J. Phys. Chem. C115(40), 19939–19946 (2011). [CrossRef]
  7. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003). [CrossRef]
  8. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science308(5726), 1296–1298 (2005). [CrossRef] [PubMed]
  9. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009). [CrossRef] [PubMed]
  10. J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3276–3280 (2007). [CrossRef]
  11. W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater.1(2), 111–113 (2002). [CrossRef] [PubMed]
  12. F. Di Stasio, L. Berti, M. Burger, F. Marabelli, S. Gardin, T. Dainese, R. Signorini, R. Bozio, and D. Comoretto, “Amplified spontaneous emission from opal photonic crystals engineered with structural defects,” Phys. Chem. Chem. Phys.11(48), 11515–11519 (2009). [CrossRef] [PubMed]
  13. S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Eu3+ emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett.76(13), 1656–1658 (2000). [CrossRef]
  14. R. C. Schroden, M. Al-Daous, and A. Stein, “Self-modification of spontaneous emission by inverse opal silica photonic crystals,” Chem. Mater.13(9), 2945–2950 (2001). [CrossRef]
  15. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004). [CrossRef] [PubMed]
  16. M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant suppression of spontaneous emission in SiO2 photonic crystals made with Tb3+-doped LaF3 nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007). [CrossRef]
  17. H. Y. Lin, H. K. Fu, C. L. Cheng, Y. F. Chen, Y. S. Lin, Y. Hung, and C. Y. Mou, “Laser action in Tb(OH)3/SiO2 photonic crystals,” Opt. Express16(21), 16697–16703 (2008). [CrossRef] [PubMed]
  18. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  19. M. Barth, A. Gruber, and F. Cichos, “Spectral and angular redistribution of photoluminescence near a photonic stop band,” Phys. Rev. B72(8), 085129 (2005). [CrossRef]
  20. L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012). [CrossRef]
  21. J. Hung, J. Castillo, and A. M. Olaizola, “Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation,” J. Lumin.101(4), 263–268 (2003). [CrossRef]
  22. C. Graf, S. Dembski, A. Hofmann, and E. Rühl, “A general method for the controlled embedding of nanoparticles in silica colloids,” Langmuir22(13), 5604–5610 (2006). [CrossRef] [PubMed]
  23. H. S. Yoo, J. Y. Han, S. W. Kim, D. Y. Jeon, and B. S. Bae, “Self-assembled SiO2 photonic crystal infiltrated by Ormosil:Eu(DBM)3 phen phosphor and its enhanced photoluminescence,” Opt. Express17(5), 3732–3740 (2009). [CrossRef] [PubMed]
  24. H. Wang, C. K. Lin, X. M. Liu, J. Lin, and M. Yu, “Monodisperse spherical core-shell-structured phosphors obtained by functionalization of silica spheres with Y2O3:Eu3+ layers for field emission displays,” Appl. Phys. Lett.87(18), 181907 (2005). [CrossRef]
  25. C. Lin, D. Kong, X. Liu, H. Wang, M. Yu, and J. Lin, “Monodisperse and core-shell-structured SiO2@YBO3:Eu3+ spherical particles: synthesis and characterization,” Inorg. Chem.46(7), 2674–2681 (2007). [CrossRef] [PubMed]
  26. Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, “Photonic crystals from monodisperse Lanthanide-Hydroxide-at-Silica core/shell colloidal spheres,” Adv. Mater. (Deerfield Beach Fla.)19(4), 577–580 (2007). [CrossRef]
  27. G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3: Eu,” Adv. Mater. (Deerfield Beach Fla.)13(20), 1557–1560 (2001).
  28. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968). [CrossRef]
  29. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.)241, 20–22 (1973).
  30. B. Tang, J. Ge, and L. Zhuo, “The fabrication of La(OH)3 nanospheres by a controllable-hydrothermal method with citric acid as a protective agent,” Nanotechnology15(12), 1749–1751 (2004). [CrossRef]
  31. C. Y. Wu, N. D. Lai, and C. C. Hsu, “Rapidly self-assembling three-dimensional opal photonic crystals,” J. Korean Phys. Soc.52(5), 1585–1588 (2008). [CrossRef]
  32. Y. Liu, C. Jiang, Y. Lin, and W. Xu, “Slow-light enhancement of stimulated emission of atomic systems in photonic crystals,” J. Opt. Soc. Am. B27(3), 442–446 (2010). [CrossRef]
  33. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75(4), 1896–1899 (1994). [CrossRef]
  34. S. Nojima, “Enhancement of optical gain in two-dimensional photonic crystals with active lattice points,” Jpn. J. Appl. Phys. Lett.37(Part 2, No. 5B), L565–L567 (1998). [CrossRef]
  35. X. Xu, B. Cheng, and D. Zhang, “The enhancement of stimulated emission near a photonic band edge,” J. Phys. Condens. Matter15(44), 7455–7461 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited