OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15440–15451

Anisotropic change in THz resonance of planar metamaterials by liquid crystal and carbon nanotube

J. H. Woo, E. Choi, Boyoung Kang, E. S. Kim, J. Kim, Y. U. Lee, Tae Y. Hong, Jae H. Kim, Ilha Lee, Young Hee Lee, and J. W. Wu  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15440-15451 (2012)
http://dx.doi.org/10.1364/OE.20.015440


View Full Text Article

Enhanced HTML    Acrobat PDF (2287 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

THz metamaterials are employed to examine changes in the meta-resonances when two anisotropic organic materials, liquid crystal and carbon nanotubes, are placed on top of metamaterials. In both anisotropic double split-ring resonators and isotropic four-fold symmetric split-ring resonators, anisotropic interactions between the electric field and organic materials are enhanced in the vicinity of meta-resonances. In liquid crystal, meta-resonance frequency shift is observed with the magneto-optical coupling giving rise to the largest anisotropic shift. In carbon nanotube, meta-resonance absorptions, parallel and perpendicular to nanotube direction, experience different amount of broadening of Lorentzian oscillator of meta-resonance. Investigation reported here opens the application of metamaterials as a sensor for anisotropic materials.

© 2012 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: May 1, 2012
Manuscript Accepted: June 7, 2012
Published: June 25, 2012

Citation
J. H. Woo, E. Choi, Boyoung Kang, E. S. Kim, J. Kim, Y. U. Lee, Tae Y. Hong, Jae H. Kim, Ilha Lee, Young Hee Lee, and J. W. Wu, "Anisotropic change in THz resonance of planar metamaterials by liquid crystal and carbon nanotube," Opt. Express 20, 15440-15451 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15440


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J.1, 99–118 (2009). [CrossRef]
  2. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett.91, 062511 (2007). [CrossRef]
  3. Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett.92, 221101 (2008). [CrossRef]
  4. J. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16, 1786–795 (2008). [CrossRef] [PubMed]
  5. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91, 184102 (2007). [CrossRef]
  6. N. Vieweg, C. Jansen, M. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range,” Opt. Express18, 6097–6107 (2010). [CrossRef] [PubMed]
  7. T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K. An, D. Bae, and Y. Lee, “Terahertz conductivity of anisotropic single walled carbon nanotube films,” Appl. Phys. Lett.80, 3403 (2002). [CrossRef]
  8. R. Singh, E. Smirnova, A. Taylor, J. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express16, 6537–6543 (2008). [CrossRef] [PubMed]
  9. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B75, 041102 (2007). [CrossRef]
  10. S. Jewell, E. Hendry, T. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008). [CrossRef]
  11. R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves30, 1139–1147 (2009). [CrossRef]
  12. S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys.84, 4462–4465 (1998). [CrossRef]
  13. C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter,” Opt. Express12, 2625–2630 (2004). [CrossRef] [PubMed]
  14. M. Zhang, S. Fang, A. Zakhidov, S. Lee, A. Aliev, C. Williams, K. Atkinson, and R. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309, 1215–1219 (2005). [CrossRef] [PubMed]
  15. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006). [CrossRef]
  16. J. Woo, E. Kim, E. Choi, B. Kang, H.-H. Lee, J. Kim, Y. Lee, T. Y. Hong, J. H. Kim, and J. Wu, “Cryogenic temperature measurement of THz meta-resonance in symmetric metamaterial superlattice,” Opt. Express19, 4384–4392 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited