OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15452–15473

Self-coherent complex field reconstruction with in-phase and quadrature delay detection without a direct-detection branch

Igor Tselniker, Moshe Nazarathy, Shalva-Ben Ezra, Jingshi Li, and Juerg Leuthold  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15452-15473 (2012)
http://dx.doi.org/10.1364/OE.20.015452


View Full Text Article

Enhanced HTML    Acrobat PDF (2397 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Self-coherent detection with interferometric field reconstruction aims at retrieving the complex-valued optical field (amplitude and phase) by digitally processing delay interferometer (DI) measurements, in order to realize a differential direct detection receiver with capabilities akin to that of a fully coherent receiver with polarization multiplexing, albeit without requiring a local oscillator laser in the receiver. Here we introduce a novel digital recursive algorithm capable of accurately reconstructing the optical complex field (both amplitude and phase) solely from the quadrature DI outputs, eliminating the AM photo-detector branch. We analyze a key impairment namely the accumulation of errors and fluctuations in the reconstructed amplitude and phase due to ADC quantization noise, recirculating in the recursion. We introduce signal processing measures to effectively mitigate this noise impairment leading to a potentially practical self-coherent receiver, demonstrated in this paper for a single polarization. We also investigate the range of applicability of self-coherent detection concluding that it is most suitable to relatively low baud-rate systems such as passive optical networks, for which application the self-coherent receiver outperforms the coherent homodyne receiver due to its improved laser noise tolerance, obtained due to the removal of the optical local oscillator.

© 2012 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 3, 2012
Revised Manuscript: June 14, 2012
Manuscript Accepted: June 14, 2012
Published: June 25, 2012

Citation
Igor Tselniker, Moshe Nazarathy, Shalva-Ben Ezra, Jingshi Li, and Juerg Leuthold, "Self-coherent complex field reconstruction with in-phase and quadrature delay detection without a direct-detection branch," Opt. Express 20, 15452-15473 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15452


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Kikuchi, K. Mandai, S. Sasaki, and K. Sekine, “Proposal and First Experimental Demonstration of Digital Incoherent Optical Field Detector for Chromatic Dispersion Compensation,” in ECOC’05 European Conference of Optical Communication, PDP Th. 4.4.4 (2005).
  2. J. Zhao, M. E. McCarthy, and A. D. Ellis, “Electronic dispersion compensation using full optical-field reconstruction in 10Gbit/s OOK based systems,” Opt. Express16(20), 15353–15365 (2008). [CrossRef] [PubMed]
  3. X. Liu, S. Chandrasekhar, and A. Leven, “Digital self-coherent detection,” Opt. Express16(2), 792–803 (2008). [CrossRef] [PubMed]
  4. N. Kikuchi and S. Sasaki, “Highly Sensitive Optical Multilevel Transmission of Arbitrary Quadrature-Amplitude Modulation (QAM) Signals With Direct Detection,” J. Lightwave Technol.28(1), 123–130 (2010). [CrossRef]
  5. Y. Takushima, H. Y. Choi, and Y. C. Chung, “Transmission of 108-Gb/s PDM 16ADPSK signal on 25-GHz grid using non-coherent receivers,” Opt. Express17(16), 13458–13466 (2009). [CrossRef] [PubMed]
  6. J. Li, R. Schmogrow, D. Hillerkuss, M. Lauermann, M. Winter, K. Worms, C. Schubert, C. Koos, W. Freude, and J. Leuthold, “Self-Coherent Receiver for PolMUX Coherent Signals, ” in OFC/NFOEC’11 Conference on Optical Fiber Communication, OWV5 (2011).
  7. S. Kumar, Impact of Nonlinearities on Fiber Optic Communications (Springer, 2011).
  8. N. Sigron, I. Tselniker, and M. Nazarathy, “Carrier phase estimation for optically coherent QPSK based on Wiener-optimal and adaptive Multi-Symbol Delay Detection (MSDD),” Opt. Express20(3), 1981–2003 (2012). [CrossRef] [PubMed]
  9. I. Tselniker, N. Sigron, and M. Nazarathy, “Joint phase noise and frequency offset estimation and mitigation for optically coherent QAM based on adaptive multi-symbol delay detection (MSDD),” Opt. Express20(10), 10944–10962 (2012). [CrossRef] [PubMed]
  10. M. Nazarathy, Y. Yadin, M. Orenstein, Y. K. Lize, L. Christen, and A. E. Willner, “Enhanced Self-Coherent Optical Decision-Feedback-Aided Detection of Multi-Symbol M-DPSK/PolSK in particular 8-DPSK/BPolSK at 40 Gbps,” in OFC/NFOEC’07 Conference on Optical Fiber Communication (2007).
  11. S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Decision-Aided Carrier Phase Estimation for Coherent Optical Communications,” J. Lightwave Technol.28(11), 1597–1607 (2010). [CrossRef]
  12. H. Sun and W. K. Tsan, “Clock recovery and jitter sources in coherent transmission, paper OTh4C.2,” in OFC/NFOEC’ Conference on Optical Fiber Communication, OTh4C.2 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited