OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15489–15502

Pulsed quantum cascade laser-based CRDS substance detection: real-time detection of TNT

C. C. Harb, T. K. Boyson, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and D. S. Moore  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15489-15502 (2012)
http://dx.doi.org/10.1364/OE.20.015489


View Full Text Article

Acrobat PDF (12318 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents experimental results from a pulsed quantum cascade laser based cavity ringdown spectrometer used as a high-throughput detection system. The results were obtained from an optical cavity with 99.8% input and output coupling mirrors that was rapidly swept (0.2s to 7s sweep times) between 1582.25 cm−1 (6.3201μm) and 1697.00 cm−1 (5.8928μm). The spectrometer was able to monitor gas species over the pressure range 585 torr to 1μtorr, and the analysis involves a new digital data processing system that optimises the processing speed and minimises the data storage requirements. In this approach we show that is it not necessary to make direct measurements of the ringdown time of the cavity to obtain the system dynamics. Furthermore, we show that correct data processing is crucial for the ultimate implementation of a wideband IR spectrometer that covers a range similar to that of commercial Fourier transform infrared instruments.

© 2012 OSA

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(260.3060) Physical optics : Infrared
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Spectroscopy

History
Original Manuscript: March 29, 2012
Revised Manuscript: May 15, 2012
Manuscript Accepted: June 12, 2012
Published: June 25, 2012

Citation
C. C. Harb, T. K. Boyson, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and D. S. Moore, "Pulsed quantum cascade laser-based CRDS substance detection: real-time detection of TNT," Opt. Express 20, 15489-15502 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15489


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum.75, 2499–2512 (2004). [CrossRef]
  2. D. S. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imaging8, 9–38 (2007). [CrossRef]
  3. B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett.25, 666–668 (2000). [CrossRef]
  4. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487, 1–18 (2010). [CrossRef]
  5. F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng.49, 111102 (2010). [CrossRef]
  6. M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A.103, 19630–19634 (2006). [CrossRef] [PubMed]
  7. G. Hancock, S. J. Horrocks, G. A. D. Ritchie, J. H. van Helden, and R. J. Walker, “Time-resolved detection of the CF3 photofragment using chirped QCL radiation,” J. Phys. Chem. A112, 9751–9757 (2008). [CrossRef] [PubMed]
  8. J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Rapid passage effects in nitrous oxide induced by a chirped external cavity quantum cascade laser,” Appl. Phys. Lett.94, 051116 (2009). [CrossRef]
  9. D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80, 044102 (2009). [CrossRef] [PubMed]
  10. P. C. Kuffner, K. J. Conroy, T. K. Boyson, G. Milford, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and C. C. Harb, “Quantum cascade laser-based substance detection: approaching the quantum noise limited,” Proc. SPIE8032, 80320C-1–80320C-10 (2011).
  11. P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd. ed. (Wiley-Interscience, Hoboken, NJ, USA, 2007).
  12. K. W. Busch and M. A. Busch, Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique (ACS Symp. Ser. 720, American Chemical Society, Washington, DC, 1999).
  13. G. Berden, R. Peeters, and G. Meijer, “Cavity ringdown spectroscopy: experimental schemes and application,” Int. Rev. Phys. Chem.19, 565–607 (2000). [CrossRef]
  14. M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (68 μm) optical parametric,” Appl. Phys. B75, 367–376 (2002). [CrossRef]
  15. A. O’Keefe and D. A. G. Deacon, “Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum.59, 2544–2551 (1988). [CrossRef]
  16. J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, and R. N. Zare, “Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame,” Chem. Phys. Lett.284, 387–395 (1998). [CrossRef]
  17. A. A. Istratov and O. F. Vyvenko, “Exponential analysis in physical phenomena,” Rev. Sci. Instrum.70, 1233–1257 (1999). [CrossRef]
  18. M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B81, 135–141 (2005). [CrossRef]
  19. M. A. Everest and D. B. Atkinson, “Discrete sums for the rapid determination of exponential decay constants,” Rev. Sci. Instrum.79, 023108 (2008). [CrossRef] [PubMed]
  20. A. G. Kallapur, I. R. Petersen, T. K. Boyson, and C. C. Harb, “Nonlinear Estimation of a Fabry-Perot Optical Cavity for Cavity Ring-Down Spectroscopy,” in IEEE Intern. Conf. on Cont. Applic. (CCA), (Yokohama, Japan) (2010), pp. 298–303.
  21. A. G. Kallapur, T. K. Boyson, I. R. Petersen, and C. C. Harb, “Nonlinear estimation of ring-down time for a Fabry-Perot optical cavity,” Opt. Express19, 6377–6386 (2011). [CrossRef] [PubMed]
  22. A. G. Kallapur, I. R. Petersen, T. K. Boyson, and C. C. Harb, “Robust nonlinear estimation for a Fabry-Perot optical cavity,” in 8th Asian Control Conference (Kaohsiung, Taiwan) (2011), pp. 1454–1459.
  23. T. K. Boyson, T. G. Spence, M. E. Calzada, and C. C. Harb, “A frequency domain analysis method for cavity ring-down spectroscopy,” Opt. Express19, 8092–8101 (2011). [CrossRef] [PubMed]
  24. D. Z. Anderson, J. C. Frisch, and C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt.23, 1238–1245 (1984). [CrossRef] [PubMed]
  25. D. Z. Anderson, “Reflectometer based on optical cavity decay time,” U.S. patent 4,571,085 (February18, 1986).
  26. B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett.512, 1–20 (2011). [CrossRef]
  27. Database, National Institute of Advanced Industrial Science and Technology (AIST), Japan. http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi , (2011).
  28. R. W. Beal and T. B. Brill, “Vibrational behavior of the - NO2 group in energetic compounds,” Appl. Spect.59, 1194–1202 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited