OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15503–15515

Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000)

Xin Gai, Barry Luther-Davies, and Thomas P. White  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15503-15515 (2012)
http://dx.doi.org/10.1364/OE.20.015503


View Full Text Article

Enhanced HTML    Acrobat PDF (1614 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have designed and fabricated a 2-D photonic crystal hetero-structure cavity in the chalcogenide glass Ge11.5As24Se64.5 that is fully embedded in a cladding with refractive index of 1.44. The low index contrast of this structure (≈1.21) means that high-Q resonances cannot be obtained using standard hetero-structure cavity designs based on W1 waveguides. We show that reducing the waveguide width can substantially improve light confinement, leading to high-Q resonances in a hetero-structure cavity. Numerical simulations indicate intrinsic Qv > 107 are possible with this approach. Experimentally, an optical cavity with a high intrinsic Qv>7.6 x 105 was achieved in a structure with a theoretical Qv = 1.7 x 106.

© 2012 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(230.5750) Optical devices : Resonators
(220.4241) Optical design and fabrication : Nanostructure fabrication
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: May 17, 2012
Revised Manuscript: June 18, 2012
Manuscript Accepted: June 21, 2012
Published: June 25, 2012

Citation
Xin Gai, Barry Luther-Davies, and Thomas P. White, "Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000)," Opt. Express 20, 15503-15515 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15503


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60(8), 5751–5758 (1999). [CrossRef]
  2. S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B62(12), 8212–8222 (2000). [CrossRef]
  3. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  4. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008). [CrossRef]
  5. T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D Appl. Phys.40(9), 2659–2665 (2007). [CrossRef]
  6. C. M. de Sterke, J. Walker, K. B. Dossou, and L. C. Botten, “Efficient slow light coupling into photonic crystals,” Opt. Express15(17), 10984–10990 (2007). [CrossRef] [PubMed]
  7. C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett.36(15), 2818–2820 (2011). [CrossRef] [PubMed]
  8. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics3(4), 206–210 (2009). [CrossRef]
  9. C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express18(7), 6831–6840 (2010). [CrossRef] [PubMed]
  10. H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett.90(23), 231102 (2007). [CrossRef]
  11. K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Opt. Express17(25), 22393–22400 (2009). [CrossRef] [PubMed]
  12. J. F. McMillan, M. B. Yu, D. L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express18(15), 15484–15497 (2010). [CrossRef] [PubMed]
  13. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express18(22), 22915–22927 (2010). [CrossRef] [PubMed]
  14. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett.35(9), 1440–1442 (2010). [CrossRef] [PubMed]
  15. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  16. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005). [CrossRef]
  17. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005). [CrossRef] [PubMed]
  18. M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D. Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express18(25), 26695–26703 (2010). [CrossRef] [PubMed]
  19. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005). [CrossRef] [PubMed]
  20. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30(19), 2575–2577 (2005). [CrossRef] [PubMed]
  21. M. K. Kim, I. K. Hwang, S. H. Kim, H. J. Chang, and Y. H. Lee, “All-optical bistable switching in curved microfiber-coupled photonic crystal resonators,” Appl. Phys. Lett.90(16), 161118 (2007). [CrossRef]
  22. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003). [CrossRef]
  23. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett.90(19), 191104 (2007). [CrossRef]
  24. C. Quémard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids62(8), 1435–1440 (2001). [CrossRef]
  25. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett.14(6), 822–824 (2002). [CrossRef]
  26. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express16(4), 2804–2815 (2008). [CrossRef] [PubMed]
  27. D. J. Lockwood and L. Pavesi, Silicon Photonics (Springer-Verlag, 2004).
  28. M. Schaub, J. Schwiegerling, E. C. Fest, A. Symmons, and R. H. Shepard, Molded Optics: Design and Manufacture (CRC Press, 2011).
  29. D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express13(8), 3079–3086 (2005). [CrossRef] [PubMed]
  30. M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Mägi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D. Y. Choi, D. A. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett.34(23), 3671–3673 (2009). [CrossRef] [PubMed]
  31. R. J. M. Palma, T. E. Clark, and C. G. Pantano, “Fabrication of two-dimensional photonic crystals in a chalcogenide glass,” Int. J. Nanotechnol.6(12), 1113–1120 (2009). [CrossRef]
  32. S. W. Jeon, J. K. Han, B. S. Song, and S. Noda, “Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity,” Opt. Express18(18), 19361–19366 (2010). [CrossRef] [PubMed]
  33. X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express18(18), 18866–18874 (2010). [CrossRef] [PubMed]
  34. X. Gai, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Polarization-independent chalcogenide glass nanowires with anomalous dispersion for all-optical processing,” Opt. Express20(12), 13513–13521 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited