OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15540–15546

Single-Mode Monolithic GaSb Vertical-Cavity Surface-Emitting Laser

Dorian Sanchez, Laurent Cerutti, and Eric Tournié  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15540-15546 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (829 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the fabrication and performances of an electrically-pumped GaSb monolithic VCSEL, i.e. ,a VCSEL with two epitaxial Bragg mirrors. Selective lateral etching of a tunnel junction is used to provide current and optical confinement. Laser devices with a 6 µm tunnel-junction effective diameter operate at 2.3 µm in CW up to 70 °C, with a threshold current as low as 1.9 mA at 30 °C. The laser emission is single mode with a SMSR near 25 dB and mode-hop-free electro-thermal tunability around 14 nm. This is the first demonstration of a single-mode electrically-pumped monolithic GaSb-based VCSEL.

© 2012 OSA

OCIS Codes
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 30, 2012
Revised Manuscript: June 1, 2012
Manuscript Accepted: June 8, 2012
Published: June 26, 2012

Dorian Sanchez, Laurent Cerutti, and Eric Tournié, "Single-Mode Monolithic GaSb Vertical-Cavity Surface-Emitting Laser," Opt. Express 20, 15540-15546 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Vicet, D. A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc.58(11), 2405–2412 (2002). [CrossRef] [PubMed]
  2. A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 microm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt.45(20), 4957–4965 (2006). [CrossRef] [PubMed]
  3. J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4 µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett.21(20), 1532–1534 (2009). [CrossRef]
  4. S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett.100(3), 031107 (2012). [CrossRef]
  5. L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, E. Cerda, and F. Genty, “2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with TEM00 output beam,” Electron. Lett.40, 869–871 (2004). [CrossRef]
  6. A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett.17(10), 2020–2022 (2005). [CrossRef]
  7. N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett.18(9), 1070–1072 (2006). [CrossRef]
  8. H. Li and K. Iga, in Vertical-Cavity Surface-Emitting Laser Devices, H.Li, and K. Iga, eds. (Springer-Verlag, 2003)
  9. K. Meneou, H. C. Lin, K. Y. Cheng, J. G. Kim, and R. U. Martinelli, “Wet thermal oxidation of AlAsSb alloys lattice matched to GaSb,” J. Appl. Phys.95(9), 5131–5136 (2004). [CrossRef]
  10. A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol.22(10), 1140–1144 (2007). [CrossRef]
  11. A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 µm at room temperature,” Electron. Lett.34(3), 281–282 (1998). [CrossRef]
  12. O. Dier, M. Sterkel, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Tunnel junctions for ohmic intra-device contacts on GaSb-substrates,” Appl. Phys. Lett.85(12), 2388–2389 (2004). [CrossRef]
  13. O. Dier, C. Lauer, and M.-C. Amann, “n-InAsSb/p-GaSb tunnel junctions with extremely low resistivity,” Electron. Lett.42(7), 419–420 (2006). [CrossRef]
  14. A. Ducanchez, L. Cerutti, A. Gassenq, P. Grech, and F. Genty, “Fabrication and Characterization of GaSb-Based Monolithic Resonant-Cavity Light-Emitting Diodes Emitting Around 2.3 µm and Including a Tunnel Junction,” IEEE Select. Top.in Quant. Electron.14, 1014–1021 (2008).
  15. K. Vizbaras, M. Törpe, S. Arafin, and M.-C. Amann, “Ultra-low resistive GaSb/InAs tunnel junctions,” Semicond. Sci. Technol.26(7), 075021 (2011). [CrossRef]
  16. A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-Based VCSEL with buried tunnel junction for emission aroud 2.3 µm,” IEEE Select. Top.in Quant. Electron.15, 933–940 (2009).
  17. A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” New J. Phys.11(12), 125014 (2009). [CrossRef]
  18. S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett.95(13), 131120 (2009). [CrossRef]
  19. O. Dier, S. Dachs, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Effects of thermal annealing on the band gap of GaInAsSb,” Appl. Phys. Lett.86(15), 151120 (2005). [CrossRef]
  20. A. Ducanchez, L. Cerutti, P. Grech, and F. Genty, “Room-Temperature Continuous-Wave Operation of 2.3 µm Sb-Based Electrically Pumped Monolithic Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett.20(20), 1745–1747 (2008). [CrossRef]
  21. A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett.45(5), 265–266 (2009). [CrossRef]
  22. D. Sanchez, L. Cerutti, and E. Tournié, “New confinement method for monolithic GaSb-VCSEL emitting in the mid-IR,” presented at the SPIE Photonics Europe conference, Brussels, Belgium, 15–19 Apr. 2012.
  23. D. Feezell, D. Buell, and L. Coldren, “InP-based 1.3-1.6-µm VCSELS with selectively etched tunnel-junction apertures on a wavelength flexible platform,” IEEE Photon. Technol. Lett.17(10), 2017–2019 (2005). [CrossRef]
  24. D. Feezell, D. Buell, D. Lofgreen, M. Mehta, and L. Coldren, “Optical design of InAlGaAs low-loss tunnel-junction apertures for long-wavelength vertical-cavity lasers,” IEEE J. Quantum Electron.42(5), 494–499 (2006). [CrossRef]
  25. J. Sigmund, M. Saglam, A. Vogt, H. L. Hartnagel, V. Buschmann, T. Wieder, and H. Fuess, “Microstructure analysis of ohmic contacts on MBE grown n-GaSb and investigation of sub-micron contacts,” J. Cryst. Growth228, 625–629 (2001). [CrossRef]
  26. Y. Lao, C. Cao, H. Wu, M. Cao, and Q. Gong, “InAsP/InGaAsP quantum-well 1.3 µm vertical-cavity surface-emitting lasers,” Electron. Lett.45(2), 105–106 (2009). [CrossRef]
  27. J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 µm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett.72(15), 1814–1816 (1998). [CrossRef]
  28. A. B. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Gain peak–cavity mode alignment optimisation in buried tunnel junction mid-infrared GaSb vertical cavity surface emitting lasers using hydrostatic pressure,” IET Optoelectron.3(6), 305–309 (2009). [CrossRef]
  29. S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE Select. Top. Quantum Electron.17, 1576–1583 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited