OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15547–15558

Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process

Xu Wang, Wei Shi, Han Yun, Samantha Grist, Nicolas A. F. Jaeger, and Lukas Chrostowski  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15547-15558 (2012)
http://dx.doi.org/10.1364/OE.20.015547


View Full Text Article

Enhanced HTML    Acrobat PDF (5287 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the design, fabrication and measurement of integrated Bragg gratings in a compact single-mode silicon-on-insulator ridge waveguide. The gratings are realized by corrugating the sidewalls of the waveguide, either on the ridge or on the slab. The coupling coefficient is varied by changing the corrugation width which allows precise control of the bandwidth and has a high fabrication tolerance. The grating devices are fabricated using a CMOS-compatible process with 193 nm deep ultraviolet lithography. Spectral measurements show bandwidths as narrow as 0.4 nm, which are promising for on-chip applications that require narrow bandwidths such as WDM channel filters. We also present the die-to-die nonuniformity for the grating devices on the wafer, and our analysis shows that the Bragg wavelength deviation is mainly caused by the wafer thickness variation.

© 2012 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: April 16, 2012
Revised Manuscript: June 12, 2012
Manuscript Accepted: June 13, 2012
Published: June 26, 2012

Citation
Xu Wang, Wei Shi, Han Yun, Samantha Grist, Nicolas A. F. Jaeger, and Lukas Chrostowski, "Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process," Opt. Express 20, 15547-15558 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15547


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol.19, 1938–1942 (2001). [CrossRef]
  2. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett.34, 1357–1359 (2009). [CrossRef] [PubMed]
  3. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on-chip group velocity dispersion engineering,” Appl. Phys. Lett.95, 141109 (2009). [CrossRef]
  4. S. Zamek, D. T. H. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, and Y. Fainman, “Compact chip-scale filter based on curve waveguide Bragg gratings,” Opt. Lett.35, 3477–3479 (2010). [CrossRef] [PubMed]
  5. D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express19, 2401–2409 (2011). [CrossRef] [PubMed]
  6. W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett.36, 3999–4001 (2011). [CrossRef] [PubMed]
  7. R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. Gwilliam, S. J. Henley, Y. Hu, R. Feldesh, and R. Jones, “Laser erasable implanted gratings for integrated silicon photonics,” Opt. Express19, 10728–10734 (2011). [CrossRef] [PubMed]
  8. X. Wang, W. Shi, R. Vafaei, N. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett.23, 290–292 (2011).
  9. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett.33, 3013–3015 (2008). [CrossRef] [PubMed]
  10. S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett.43, 630–631 (2007). [CrossRef]
  11. I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express, 17, 18518–18524 (2009). [CrossRef]
  12. S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C6, S240–S243 (2009). [CrossRef]
  13. I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photon. Technol. Lett.21, 1894–1896 (2009). [CrossRef]
  14. J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B, 20, 2753–2757 (2002). [CrossRef]
  15. G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.23, 6–9 (2011).
  16. R. A. Soref, J. Schmidtchen, and K. Peterman, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron.27, 1971–1974 (1991). [CrossRef]
  17. S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” J. Lightwave Technol.23, 2103–2111 (2005). [CrossRef]
  18. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express18, 14474–14479 (2010). [CrossRef] [PubMed]
  19. A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal3, 567–579 (2011).
  20. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron.16, 316–324 (2010). [CrossRef]
  21. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express18, 23598–23607 (2010). [CrossRef] [PubMed]
  22. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.23, 401–412 (2005). [CrossRef]
  23. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol.27, 4076–4083 (2009). [CrossRef]
  24. Software: MODE Solutions, Lumerical Solutions, Inc.
  25. W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photonics Journal3, 422–432 (2011). [CrossRef]
  26. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron.29, 1824–1834 (1993). [CrossRef]
  27. http://www.epixfab.eu
  28. S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in 2011 8th IEEE Conference on Group IV Photonics (GFP), 71–73 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited