OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15559–15568

Wavelength dependence of the degree of polarization in cloud-free skies: simulations of real environments

Nathan J. Pust and Joseph A. Shaw  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15559-15568 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (786 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The visible and NIR maximum degree of polarization (DoP) of cloud-free skylight depends on many factors, including wavelength, sun zenith angle, surface reflectance, and aerosol properties. For clear-sky environments, radiative transfer models accurately estimate the sky DoP when each of these properties is well constrained. (The model used here was recently compared with full-sky polarization measurements with excellent agreement.) Using coincident Hyperion satellite observations and AERONET retrievals to provide model inputs, we simulate the maximum sky DoP for a variety of locations. Results show large variations in the wavelength dependence of sky polarization across different Earth environments. Therefore, accurate modeling of the sky DoP depends largely upon proper representation of the surface and aerosols in the model. Simple models which do not incorporate accurate aerosol and surface information have limited utility for simulating cloud-free sky DoP.

© 2012 OSA

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(110.5405) Imaging systems : Polarimetric imaging
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: April 17, 2012
Revised Manuscript: May 23, 2012
Manuscript Accepted: June 15, 2012
Published: June 26, 2012

Nathan J. Pust and Joseph A. Shaw, "Wavelength dependence of the degree of polarization in cloud-free skies: simulations of real environments," Opt. Express 20, 15559-15568 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. J. Pust, A. R. Dahlberg, M. J. Thomas, and J. A. Shaw, “Comparison of full-sky polarization and radiance observations to radiative transfer simulations which employ AERONET products,” Opt. Express19(19), 18602–18613 (2011). [CrossRef] [PubMed]
  2. J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth's atmosphere with aerosols,” J. Quant. Spect. Rad. Trans.107(3), 479–507 (2007). [CrossRef]
  3. A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F. M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J. C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite data,” Remote Sens. Environ.107(1-2), 90–108 (2007). [CrossRef]
  4. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geol. Res.111(D11), D11208 (2006). [CrossRef]
  5. Z. Li, P. Goloub, C. Devaux, X. Gu, J. L. Deuze, Y. Qiao, and F. Zhao, “Retrieval of aerosol optical and physical properties from ground-based spectral, multi-angular, and polarized sun-photometer measurements,” Remote Sens. Environ.101(4), 519–533 (2006). [CrossRef]
  6. D. J. Diner, J. V. Martonchik, C. Borel, S. A. W. Gerstl, H. R. Gordon, Y. Knyazikhin, R. Myneni, B. Pinty, and M. M. Verstraete, “MISR. Level 2 Surface Retrieval Algorithm Theoretical Basis,” http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/MISR/ATB_L2Surface43.pdf .
  7. H. Rahman, B. Pinty, and M. M. Verstraete, “Coupled surface-atmosphere reflectance (CSAR) model. 2: Semiempirical surface model usable with NOAA advanced very high resolution radiometer data,” J. Geol. Res.98(D11), 20791–20801 (1993). [CrossRef]
  8. D. J. Diner, J. C. Beckert, T. H. Reilly, C. J. Bruegge, J. E. Conel, R. A. Kahn, J. V. Martonchik, T. P. Ackerman, R. Davies, S. A. W. Gerstl, H. R. Gordon, J. P. Muller, R. B. Myneni, P. J. Sellers, B. Pinty, and M. M. Verstraete, “Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview,” IEEE Trans. Geosci. Rem. Sens.36(4), 1072–1087 (1998). [CrossRef]
  9. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ.66(1), 1–16 (1998). [CrossRef]
  10. O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geol. Res.105(D16), 20673–20696 (2000). [CrossRef]
  11. E. Boesche, P. Stammes, T. Ruhtz, R. Preusker, and J. Fischer, “Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements,” Appl. Opt.45(34), 8790–8805 (2006). [CrossRef] [PubMed]
  12. I. Aben, F. Helderman, D. M. Stam, and P. Stammes, “Spectral fine-structure in the polarization of skylight,” Geophys. Res. Lett.26(5), 591–594 (1999). [CrossRef]
  13. Z. Sekera, “Determination of atmospheric parameters from measurement of polarization of upward radiation by satellite or space probe,” Icarus6(1-3), 348–359 (1967). [CrossRef]
  14. A. Kreuter, C. Emde, and M. Blumthaler, “Measuring the influence of aerosols and albedo on sky polarization,” Atmos. Res.98(2-4), 363–367 (2010). [CrossRef]
  15. C. Emde, R. Buras, B. Mayer, and M. Blumthaler, “The impact of aerosols on polarized sky radiance: model, development, validation, and applications,” Atmos. Chem. Phys.10(2), 383–396 (2010). [CrossRef]
  16. D. M. Stam, J. F. De Haan, J. W. Hovenier, and P. Stammes, “Degree of linear polarization of light emerging from the cloudless atmosphere in the oxygen A band,” J. Geol. Res.104(D14), 16843–16858 (1999). [CrossRef]
  17. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak Publishing, 1988).
  18. J. G. Kuriyan, D. H. Phillips, and R. C. Willson, “Determination of optical parameters of atmospheric particulates from ground-based polarimeter measurements,” Q. J. R. Meteorol. Soc.100(426), 665–677 (1974). [CrossRef]
  19. A. R. Dahlberg, N. J. Pust, and J. A. Shaw, “Effects of surface reflectance on skylight polarization measurements at the Mauna Loa Observatory,” Opt. Express19(17), 16008–16021 (2011). [CrossRef] [PubMed]
  20. D. Beaglehole and G. G. Carter, “Antartic Skies 2. Characterization of the intensity and polarization of skylight in a high albedo environment,” J. Geol. Res.97(D2), 2597–2600 (1992). [CrossRef]
  21. Y. Liu and K. Voss, “Polarized radiance distribution measurement of skylight. II. Experiment and data,” Appl. Opt.36(33), 8753–8764 (1997). [CrossRef] [PubMed]
  22. T. Cooley, “A new technique to find both real and imaginary index of refraction of atmospheric aerosols from clear sky radiance measurements,” PhD Thesis, University of Arizona (1995).
  23. J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, “Hyperion, a space-based imaging spectrometer,” IEEE Trans. Geosci. Remote Sens. 41, 1160–1173 (2003).
  24. “AERONET Inversion Products,” http://aeronet.gsfc.nasa.gov/new_web/Documents/Inversion_products_V2.pdf .
  25. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” in Proc. of the SPIE6233, 508–515 (2006).
  26. P. S. Barry, J. Mendenhall, P. Jarecke, M. Folkman, J. Pearlman, and B. Markham, “EO-1 Hyperion hyperspectral aggregation and comparison with EO-1 Advanced Land Imager and Landsat 7 ETM+,” in IGARSS, 1648–1651 (2002).
  27. F. Nadal and F. M. Breon, “Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements,” IEEE Trans. Geosci. Rem. Sens.37(3), 1709–1718 (1999). [CrossRef]
  28. E. Boesche, P. Stammes, R. Preusker, R. Bennartz, W. Knap, and J. Fischer, “Polarization of skylight in the O2A band: effects of aerosol properties,” Appl. Opt.47(19), 3467–3480 (2008). [CrossRef] [PubMed]
  29. J. Zeng, Q. Han, and J. Wang, “High-spectral resolution simulation of polarization of skylight: Sensitivity to aerosol vertical profile,” Geo. Res. Let. 35, L20801 (2008).
  30. N. J. Pust, “Full Sky Imaging Polarimetry for Initial Polarized MODTRAN Validation,” PhD Thesis, Montana State University (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited