OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15589–15609

Error reduction methods for integrated-path differential-absorption lidar measurements

Jeffrey R. Chen, Kenji Numata, and Stewart T. Wu  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15589-15609 (2012)
http://dx.doi.org/10.1364/OE.20.015589


View Full Text Article

Enhanced HTML    Acrobat PDF (1320 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and “log after averaging”, or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of “averaging before log”.

© 2012 OSA

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

ToC Category:
Remote Sensing

History
Original Manuscript: March 14, 2012
Revised Manuscript: May 25, 2012
Manuscript Accepted: June 12, 2012
Published: June 26, 2012

Citation
Jeffrey R. Chen, Kenji Numata, and Stewart T. Wu, "Error reduction methods for integrated-path differential-absorption lidar measurements," Opt. Express 20, 15589-15609 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15589


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).
  2. C. Weitkamp, Lidar: Range Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).
  3. Space Studies Board, National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Academies Press, 2007).
  4. “A-SCOPE—advanced space carbon and climate observation of planet earth, report for assessment,” ESA-SP1313/1(European Space Agency, 2008), http://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdf .
  5. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B90(3-4), 593–608 (2008). [CrossRef]
  6. J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (CD) (Optical Society of America, 2008), paper LMA4.
  7. J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus Ser. B, Chem. Phys. Meteorol.62(5), 770–783 (2010). [CrossRef]
  8. J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2.,” Appl. Opt.48(28), 5413–5422 (2009). [CrossRef] [PubMed]
  9. M. J. T. Milton and P. T. Woods, “Pulse averaging methods for a laser remote monitoring system using atmospheric backscatter,” Appl. Opt.26(13), 2598–2603 (1987). [CrossRef] [PubMed]
  10. A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech.2(2), 755–772 (2009). [CrossRef]
  11. J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight,” Appl. Opt.43(4), 914–927 (2004). [CrossRef] [PubMed]
  12. S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus Ser. B, Chem. Phys. Meteorol.62(5), 759–769 (2010). [CrossRef]
  13. K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, “Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide,” Appl. Opt.50(7), 1047–1056 (2011). [CrossRef] [PubMed]
  14. F. Koyama and K. Oga, “Frequency chirping in external modulators,” J. Lightwave Technol.6(1), 87–93 (1988). [CrossRef]
  15. J. Caron, Y. Durand, J. L. Bezy, and R. Meynart, “Performance modeling for A-SCOPE, a spaceborne lidar measuring atmospheric CO2,” Proc. SPIE7479, 74790E-1 (2009). [CrossRef]
  16. C. Stephan, M. Alpers, B. Millet, G. Ehret, P. Flamant, and C. Deniel, “MERLIN: a space-based methane monitor,” Proc. SPIE8159, 815908, 815908–815915 (2011). [CrossRef]
  17. L. Mandel, “Interpretation of instantaneous frequency,” Am. J. Phys.42(10), 840–846 (1974). [CrossRef]
  18. W. B. Grant, “Effect of differential spectral reflectance on DIAL measurements using topographic targets,” Appl. Opt.21(13), 2390–2394 (1982). [CrossRef] [PubMed]
  19. J. W. Goodman, Statistical Optics (John Wiley & Sons, 1985).
  20. N. Z. Hakim, B. E. A. Saleh, and M. C. Teich, “Generalized excess noise factor for avalanche photodiodes of arbitrary structure,” IEEE Trans. Electron. Dev.37(3), 599–610 (1990). [CrossRef]
  21. J. D. Beck, R. Scritchfield, P. Mitra, W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear-mode photon counting with the noiseless gain HgCdTe e-APD,” Proc. SPIE8033, 80330N, 80330N–15 (2011). [CrossRef]
  22. V. S. R. Gudimetla and M. J. Kavaya, “Special relativity corrections for space-based lidars,” Appl. Opt.38(30), 6374–6382 (1999). [CrossRef] [PubMed]
  23. R. N. Clark, “Water frost and ice: the near-infrared spectral reflectance 0.65–2.5 μm,” J. Geophys. Res.86(B4), 3087–3096 (1981). [CrossRef]
  24. M. Dumont, O. Brissaud, G. Picard, B. Schmitt, J. C. Gallet, and Y. Arnaud, “High-accuracy measurements of snow bidirectional reflectance distribution function at visible and NIR wavelengths – comparison with modeling results,” Atmos. Chem. Phys. Discuss.9(5), 19279–19311 (2009). [CrossRef]
  25. D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band shape and bandwidth modification,” Phys. Rev. A26(1), 12–18 (1982). [CrossRef]
  26. G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A71(4), 043809 (2005). [CrossRef]
  27. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49(25), 4801–4807 (2010). [CrossRef] [PubMed]
  28. N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol.7(7), 1071–1082 (1989). [CrossRef]
  29. L. Mandel, “Fluctuations of photon beams: the distribution of the photo-electrons,” Proc. Phys. Soc.74(3), 233–243 (1959). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited