OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15610–15627

GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change

Sooraj Ravindran, Arnab Datta, Kamal Alameh, and Yong Tak Lee  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15610-15627 (2012)
http://dx.doi.org/10.1364/OE.20.015610


View Full Text Article

Enhanced HTML    Acrobat PDF (1764 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and analyse a GaAs-based optical switch having a ring resonator configuration which can switch optical telecommunication signals over the 1300 nm and 1500 nm bands, using bias assisted carrier injection as the switching mechanism. The switching is achieved through variation in the refractive index of the ring resonator produced by changing the injected carrier density through the application of bias voltage. Detail analysis of the switching characteristics reveals that the amount of switching depends on the refractive index change, which indeed is a strong function of injected carrier density and applied bias voltage. An isolation of 25 dB can be achieved during the ON state, while more than 40 dB isolation is realised during the OFF state. More importantly, our analysis shows that the proposed GaAs-based switch can operate over the 1300 nm and 1500 nm optical telecommunication bands, that are much farther from the bandgap of the GaAs material, without the need for “conventional” Indium based ternary and quaternary semiconductor materials. It therefore extends the usable wavelength of GaAs based optoelectronic devices. Furthermore, we have presented detail calculations to quantify power-delay metric of the proposed device. The proposed optical switch maintains a smaller footprint as when compared to Mach-Zehnder Interferometer or Directional Coupler based switches therefore, making it suitable for large scale integration and implementing next generation optical interconnects, optical communication and computing.

© 2012 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.0250) Integrated optics : Optoelectronics
(230.3120) Optical devices : Integrated optics devices
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

History
Original Manuscript: October 25, 2011
Revised Manuscript: April 8, 2012
Manuscript Accepted: April 12, 2012
Published: June 26, 2012

Citation
Sooraj Ravindran, Arnab Datta, Kamal Alameh, and Yong Tak Lee, "GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change," Opt. Express 20, 15610-15627 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15610


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Shimomura and S. Arai, “Semiconductor waveguide optical switches and modulators,” Fiber Int. Opt.13, 65–100 (1992). [CrossRef]
  2. R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microw. Theory Tech.30, 1121–1137 (1982). [CrossRef]
  3. T. Tamir, Integrated Optics (Springer-Verlang, 1979).
  4. G. I. Papadimitriou, C. Papazoglou, A. S. Pomportsis, and I. Tutorial, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol.21, 384–405 (2003). [CrossRef]
  5. P.K. Basu, Theory of Optical Processes in Semiconductors-Bulk and Microstructures, (Oxford Science Publications, 1997).
  6. O. Mikami and H. Nakagome, “Waveguided optical switch in InGaAs/InP using free-carrier plasma dispersion,” Electron. Lett.20, 228–229 (1984). [CrossRef]
  7. N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Tech.47, 1151–1171 (1999). [CrossRef]
  8. G. Li and P. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol.21, 2010–2030 (2003). [CrossRef]
  9. S. Ng, S. Abdalla, P. Barrios, A. Delage, S. Janz, R. McKinnon, and B. Syrett, “Bend loss attenuator by carrier injection in InGaAsP/InP,” Electron. Lett.41, 1348–1350 (2005). [CrossRef]
  10. F. Ito and T. Tanifuji, “Carrier-injection-type optical switch in GaAs with a 1.06–1.55μm wavelength range,” Appl. Phys. Lett.54, 134–136 (1989). [CrossRef]
  11. S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004). [CrossRef]
  12. G. Muller, L. Stoll, G. Schulte-Roth, and U. Wolff, “Low current plasma effect optical switch on InP,” Electron. Lett.26, 115–117 (1990). [CrossRef]
  13. H. Simos, A. Bogris, A. Raptis, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22, 206–208, (2010) [CrossRef]
  14. Chao Li, Linjie Zhou, and Andrew W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express15, 5069–5076 (2007). [CrossRef] [PubMed]
  15. T.A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C.H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett.15, 36–38, (2003) [CrossRef]
  16. B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15, 998–1005 (1997). [CrossRef]
  17. D. G. Rabus, M. Hamacher, and H. Heidrich, “Resonance frequency tuning of a double ring resonator in GaInAsP/InP: experiment and simulation,” Jpn. J. Appl. Phys.41, 1186–1189 (2002). [CrossRef]
  18. S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express18, 16858–16867 (2010). [CrossRef] [PubMed]
  19. T. Sadagopan, S. Choi, S. J. Choi, K. Djordjev, and P. Dapkus, “Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett.17, 414–416 (2005). [CrossRef]
  20. T. Wood, “Multiple quantum well (MQW) waveguide modulators,” J. Lightwave Technol.6, 743–757 (1988). [CrossRef]
  21. S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol.23, 1800–1807, (2005). [CrossRef]
  22. S. Ravindran, K. Alameh, and Y.-T. Lee, “Design and analysis of electroabsorptive quantum well based double ring resonators for wavelength switching applications,” Opt. Quantum Electron.41, 635–644 (2009). [CrossRef]
  23. K. Djordjev, S.-J. Choi, S.-J. Choi, and P. Dapkus, “Active semiconductor microdisk devices,” J. Lightwave Technol.20, 105–113 (2002). [CrossRef]
  24. B. Little, H. Haus, J. Foresi, L. Kimerling, E. Ippen, and D. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett.10, 816–818 (1998). [CrossRef]
  25. K. Djordjev, S.-J. Choi, S.-J. Choi, and R. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett.14, 828–830 (2002). [CrossRef]
  26. J. Piprek, Semiconductor Optoelectronic Devices-Introduction to Physics and Simulation (Academic Press, 2003).
  27. J. Baliga, Fundamentals of Power Semiconductor Devices (Springer Science, 2008). [CrossRef]
  28. J.-P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters,” IEEE J. Quantum Electron.30, 1801–1816 (1994). [CrossRef]
  29. C. Glingener, D. Schulz, and E. Voges, “Modeling of optical waveguide modulators on III–V semiconductors,” IEEE J. Quantum Electron.31, 101–112 (1995). [CrossRef]
  30. K.J. Ebeling, Integrated Optoelectronics (Springer-Verlang, 1992).
  31. J. Faist and F.-K. Reinhart, “Phase modulation in GaAs/AlGaAs double heterostructures. I. theory,” J. Appl. Phys.67, 6998–7005 (1990). [CrossRef]
  32. B. Bennett and R. Soref, “Electrorefraction and electroabsorption in InP, GaAs, GaSb, InAs, and InSb,” IEEE J. Quantum Electron.23, 2159–2166 (1987). [CrossRef]
  33. J. G. Mendoza-Alvarez, R. H. Yan, and L. A. Coldren, “Contribution of the band-filling effect to the effective refractive-index change in double-heterostructure GaAs/AlGaAs phase modulators,” J. Appl. Phys.62, 4548–4553 (1987). [CrossRef]
  34. B. Bennett, R. Soref, and J. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. of 26, 113–122 (1990). [CrossRef]
  35. J. G. Mendoza-Alvarez, F. D. Nunes, and N. B. Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys.51, 4365–4367 (1980). [CrossRef]
  36. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley and Sons, 2007).
  37. K. Loi, L. Shen, H. Wieder, and W. Chang, “Electroabsorption waveguide modulators at 1.3 μm fabricated on GaAs substrates,” IEEE Photon. Technol. Lett.9, 1229–1231 (1997). [CrossRef]
  38. L. Shen, H. Wieder, and W. Chang, “Electroabsorption modulation at 1.3 μm on GaAs substrates using a step-graded low temperature grown InAlAs buffer,” IEEE Photon. Technol. Lett.8, 352–354 (1996). [CrossRef]
  39. S. M. Lord, B. Pezeshki, and J. S. Harris, “Electroabsorption modulators operating at 1.3 μm on GaAs substrates,” Opt. Quantum Electron.25, S953–S964 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited