OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15654–15668

The effects of reduced bit depth on optical coherence tomography phase data

William A. Ling and Audrey K. Ellerbee  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15654-15668 (2012)
http://dx.doi.org/10.1364/OE.20.015654


View Full Text Article

Enhanced HTML    Acrobat PDF (1459 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Past studies of the effects of bit depth on OCT magnitude data concluded that 8 bits of digitizer resolution provided nearly the same image quality as a 14-bit digitizer. However, such studies did not assess the effects of bit depth on the accuracy of phase data. In this work, we show that the effects of bit depth on phase data and magnitude data can differ significantly. This finding has an important impact on the design of phase-resolved OCT systems, such as those measuring motion and the birefringence of samples, particularly as one begins to consider the tradeoff between bit depth and digitizer speed.

© 2012 OSA

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(100.5070) Image processing : Phase retrieval
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 11, 2012
Revised Manuscript: June 18, 2012
Manuscript Accepted: June 19, 2012
Published: June 26, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
William A. Ling and Audrey K. Ellerbee, "The effects of reduced bit depth on optical coherence tomography phase data," Opt. Express 20, 15654-15668 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15654


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008). [CrossRef] [PubMed]
  2. W. Wieser, B. Biedermann, T. Klein, C. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  3. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007). [CrossRef] [PubMed]
  4. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett.30(16), 2131–2133 (2005). [CrossRef] [PubMed]
  5. G. Liu, M. Rubinstein, A. Saidi, W. Qi, A. Foulad, B. Wong, and Z. Chen, “Imaging vibrating vocal folds with a high speed 1050 nm swept source OCT and ODT,” Opt. Express19(12), 11880–11889 (2011). [CrossRef] [PubMed]
  6. J. Zhang, W. Jung, J. S. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express12(24), 6033–6039 (2004). [CrossRef] [PubMed]
  7. E. Gotzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express13(25), 10217–10229 (2005). [CrossRef] [PubMed]
  8. B. D. Goldberg, B. J. Vakoc, W-Y Oh, M. J. Suter, S. Waxman, M. I. Freilich, B. E. Bouma, and G. J. Tearney, “Performance of reduced bit-depth acquisition for optical frequency domain imaging,” Opt. Express17(19), 16957–16968 (2009). [CrossRef] [PubMed]
  9. Z. Lu, D. K. Kasaragod, and S. J. Matcher, “Performance comparison between 8- and 14-bit- depth imaging in polarization-sensitive swept-source optical coherence tomography,” Biomed. Opt. Express4(2), 794–804 (2011). [CrossRef]
  10. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006). [CrossRef] [PubMed]
  11. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” App. Opt.42(34), 6953–6958 (2003). [CrossRef]
  12. M. A. Choma, A. K. Ellerbee, C. Yang, T. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett.30(10), 1162–1164 (2005). [CrossRef] [PubMed]
  13. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett.31(10), 1462–1464 (2006). [CrossRef] [PubMed]
  14. A. K. Ellerbee, T. L. Creazzo, and J. A. Izatt, “Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy,” Opt. Express15(13), 8115–8124 (2007). [CrossRef] [PubMed]
  15. A. K. Ellerbee and J. A. Izatt, “Phase retrieval in low-coherence interferometric microscopy,” Opt. Lett.32(4), 388–390 (2007). [CrossRef] [PubMed]
  16. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003). [CrossRef] [PubMed]
  17. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  18. A. Oppenheim and R. Schafer, Discrete-time Signal Processing, 3rd ed. (Prentice Hall, 2009).
  19. W. Kester, The Data Conversion Handbook (Elsevier, 2005).
  20. D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE7372. 73720R (2009). [CrossRef]
  21. S. Vergnole, D. Lvesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express18(10), 10446–10461 (2010). [CrossRef] [PubMed]
  22. C. Copeland and A. K. Ellerbee, “The effects of different gold standards on the assessment of the accuracy of different resampling techniques for optical coherence tomography,” Proc. SPIE. 8225–8237 (2012).
  23. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited