OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15734–15751

Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering

Lihong Gao, Fabien Lemarchand, and Michel Lequime  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15734-15751 (2012)
http://dx.doi.org/10.1364/OE.20.015734


View Full Text Article

Enhanced HTML    Acrobat PDF (1028 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the present paper we determine the optical constants and thicknesses of multilayer thin film stacks, in the visible and near infrared ranges. These parameters are derived from the transmittance and reflectance spectra measured by a spectrophotometer, for several angles of incidence. Several examples are studied, from a simple single layer structure up to a 22-layer dielectric filter. We show that the use of a large number of incidence angles is an effective means of reducing the number of mathematical solutions and converging on the correct physical solution when the number of layers increases. More specifically, we provide an in-depth discussion of the approach used to extract the index and thickness of each layer, which is achieved by analysing the various mathematical solutions given by a global optimization procedure, based on as little as 6 and as many as 32 variable parameters. The results show that multiple incidences, lead to the true solution for a filter with a large number of layers. In the present study, a Clustering Global Optimization algorithm is used, and is shown to be efficient even for a high number of variable parameters. Our analysis allows the accuracy of the reverse engineering process to be estimated at approximately 1 nm for the thickness, and 2 10−3 for the index of each layer in a 22-layer filter.

© 2012 OSA

OCIS Codes
(310.0310) Thin films : Thin films
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

History
Original Manuscript: March 7, 2012
Revised Manuscript: April 4, 2012
Manuscript Accepted: April 8, 2012
Published: June 27, 2012

Citation
Lihong Gao, Fabien Lemarchand, and Michel Lequime, "Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering," Opt. Express 20, 15734-15751 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15734


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. O. Nilsson, “Determination of optical constants from intensity measurements at normal incidence,” Appl. Opt.7(3), 435–442 (1968). [PubMed]
  2. R. E. Denton, R. D. Campbell, and S. G. Tomlin, “The determination of the optical constants of thin films from measurements of reflectance and transmittance at normal incidence,” J. Phys. D Appl. Phys.5, 852–863 (1972).
  3. T. C. Paulick, “Inversion of normal-incidence (R,T) measurements to obtain n + ik for thin films,” Appl. Opt.25(4), 562–564 (1986). [PubMed]
  4. I. Chambouleyron, J. M. Martínez, A. C. Moretti, and M. Mulato, “Retrieval of optical constants and thickness of thin films from transmission spectra,” Appl. Opt.36(31), 8238–8247 (1997). [PubMed]
  5. D. Poelman, D. Wauters, R. L. V. Meirhaeghe, and F. Cardon, “Intrinsic optical and structural properties of SrS thin films,” Thin Solid Films350, 67–71 (1999).
  6. F. C. Lai, L. M. Lin, R. Q. Gai, Y. Z. Lin, and Z. G. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films515, 7387–7392 (2007).
  7. A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and J. A. Dobrowolski, “Influence of small inhomogeneities on the spectral characteristics of single thin films,” Appl. Opt.36(28), 7188–7198 (1997). [PubMed]
  8. A. V. Tikhonravov, M. K. Trubetskov, and G. DeBell, “On the accuracy of optical thin film parameter determination based on spectrophotometric data,” Proc. SPIE5188, 190–199 (2003).
  9. S. Wu, X. Long, K. Yang, and Z. Tan, “A novel determination method of thin film optical parameters with least dependence on photometric measurement systematic errors,” Opt. Laser Technol.44, 771–775 (2012).
  10. J. A. Dobrowolski, F. C. Ho, and A. Waldorf, “Determination of optical constants of thin film coating materials based on inverse synthesis,” Appl. Opt.22(20), 3191–3200 (1983). [PubMed]
  11. D. P. Arndt, R. M. A. Azzam, J. M. Bennett, J. P. Borgogno, C. K. Carniglia, W. E. Case, J. A. Dobrowolski, U. J. Gibson, T. T. Hart, F. C. Ho, V. A. Hodgkin, W. P. Klapp, H. A. Macleod, E. Pelletier, M. K. Purvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, and T. F. Thonn, “Multiple determination of the optical constants of thin-film coating materials,” Appl. Opt.23(20), 3571–3596 (1984). [PubMed]
  12. J. Bartella, P. H. Berning, B. Bovard, C. K. Carniglia, E. Casparis, V. R. Costich, J. A. Dobrowolski, U. J. Gibson, R. Herrmann, F. C. Ho, M. R. Jacobson, R. E. Klinger, J. A. Leavitt, H.-G. Lotz, H. A. Macleod, M. J. Messerly, D. F. Mitchell, W. D. Muenz, K. W. Nebesny, R. Pfefferkorn, S. G. Saxe, D. Y. Song, P. Swab, R. M. Swenson, W. Thoeni, F. V. Milligen, S. Vincent, and A. Waldorf, “Multiple analysis of an unknown optical multilayer coating,” Appl. Opt.24(16), 2625–2646 (1985). [PubMed]
  13. J. A. Dobrowolski, F. C. Ho, L. Baby, R. Boulay, B. Drouin, R. Gagnon, and P. A. Bélanger, “Use of the inverse synthesis method for the determination of the optical constants of paper in the far infrared,” Appl. Opt.25(16), 2681–2687 (1986). [PubMed]
  14. O. Stenzel, V. Hopfe, and P. Klobes, “Determination of optical parameters for amorphous thin film materials on semitransparent substrates from transmittance and reflectance measurements,” J. Phys. D Appl. Phys.24, 2088–2094 (1991).
  15. H. Wang, “Determination of optical constants of absorbing crystalline thin films from reflectance and transmittance measurements with oblique incidence,” J. Opt. Soc. Am. A11, 2331–2337 (1994).
  16. A. Lamminpää, S. Nevas, F. Manoocheri, and E. Ikonen, “Characterization of thin films based on reflectance and transmittance measurements at oblique angles of incidence,” Appl. Opt.45(7), 1392–1396 (2006). [PubMed]
  17. P. A. v. Nijnatten, “Optical analysis of coatings by variable angle spectrophotometry,” Thin Solid Films516, 4553–4557 (2008).
  18. A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. J. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt.51(2), 245–254 (2012). [PubMed]
  19. TFCalc, Software Spectra Inc, Portland, OR, USA, http://www.sspectra.com .
  20. Filmwizard, Scientific Computing Int., Encinitas, CA, USA, http://www.sci-soft.com .
  21. Essential MacLeod, Thin Film Center Inc, Tucson, AZ, USA, http://www.thinfilmcenter.com/ .
  22. OptiLayer, Optilayer Ltd., Moscow, Russia, http://www.optilayer.com/ .
  23. H. A. Macleod, Thin-film Optical Filters (Institute of Physics Publishing, Bristol and Philadelphia, 2001).
  24. L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films520, 501–509 (2011).
  25. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett.69, 371–373 (1996).
  26. G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films377–378, 68–73 (2000).
  27. B. von Blanckenhagen, D. Tonova, and J. Ullmann, “Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials,” Appl. Opt.41(16), 3137–3141 (2002). [PubMed]
  28. M. Kildemo, R. Ossikovski, and M. Stchakovsky, “Measurement of absorption edge of thick transparent substrates using incoherent reflection model and spectroscopic UV-visible–near IR ellipsometry,” Thin Solid Films313–314, 108–113 (1998).
  29. Z. G. Hu, Z. M. Huang, Y. N. Wu, S. H. Hu, G. S. Wang, J. H. Ma, and J. H. Chu, “Optical characterization of ferroelectric Bi3.25La0.75Ti3O12 thin films,” Eur. Phys. J. B38, 431–436 (2004).
  30. R. D. L. Kronig, “On the theory of dispersion of x-rays,” J. Opt. Soc. Am.12, 547–556 (1926).
  31. T. Csendes, “Nonlinear parameter estimation by global optimization - efficiency and reliability,” Acta Cybernetica8, 361–370 (1988).
  32. K. D. Hendrix and J. Oliver, “Optical interference coatings design contest 2010: solar absorber and Fabry-Perot etalon,” Appl. Opt.50(9), C286–C300 (2011). [PubMed]
  33. M. Tilsch and K. Hendrix, “Optical Interference Coatings Design Contest 2007: triple bandpass filter and nonpolarizing beam splitter,” Appl. Opt.47(13), C55–C69 (2008). [PubMed]
  34. M. Tilsch, K. Hendrix, and P. Verly, “Optical interference coatings design contest 2004,” Appl. Opt.45(7), 1544–1554 (2006). [PubMed]
  35. C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserré, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin-film multilayers at resonances under total reflection,” Appl. Opt.50(9), C382–C387 (2011). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited