OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15781–15796

Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials

Hadiseh Alaeian and Jennifer A. Dionne  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15781-15796 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2819 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nanocrystal superlattices have emerged as a new platform for bottom-up metamaterial design, but their optical properties are largely unknown. Here, we investigate their emergent optical properties using a generalized semi-analytic, full-field solver based on rigorous coupled wave analysis. Attention is given to superlattices composed of noble metal and dielectric nanoparticles in unary and binary arrays. By varying the nanoparticle size, shape, separation, and lattice geometry, we demonstrate the broad tunability of superlattice optical properties. Superlattices composed of spherical or octahedral nanoparticles in cubic and AB2 arrays exhibit magnetic permeabilities tunable between 0.2 and 1.7, despite having non-magnetic constituents. The retrieved optical parameters are nearly polarization and angle-independent over a broad range of incident angles. Accordingly, nanocrystal superlattices behave as isotropic bulk metamaterials. Their tunable permittivities, permeabilities, and emergent magnetism may enable new, bottom-up metamaterials and negative index materials at visible frequencies.

© 2012 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: April 16, 2012
Revised Manuscript: June 16, 2012
Manuscript Accepted: June 19, 2012
Published: June 27, 2012

Hadiseh Alaeian and Jennifer A. Dionne, "Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials," Opt. Express 20, 15781-15796 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Erb, H. S. Son, B. Samanta, V. M. Rotello, and B. B. Yellen, “Magnetic assembly of colloidal superstructures with multipole symmetry,” Nature (London)457, 999–1002 (2009). [CrossRef]
  2. J. Henzie, M. Grunwald, A. W. Cooper, P. L. Geissler, and P. Yang, “Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices,” Nat. Mater.11, 131–137 (2011). [CrossRef] [PubMed]
  3. A. Tao, P. Sinsermsuksakul, and P. Yang, “Tunable plasmonic lattices of silver nanocrystals,” Nat. Nanotechnol.2, 435–440 (2007). [CrossRef]
  4. Z. L. Wang, “Structural analysis of self-assembling nanocrystal superlattices,” Adv. Mater.10, 13–30 (1998). [CrossRef]
  5. N. A. El-Masry, M. K. Behbehani, S. F. LeBoeuf, M. E. Aumer, J. C. Roberts, and S. M. Bedair, “Self-assembled AlInGaN quaternary superlattice structures,” Appl. Phys. Lett.79, 1616–1618 (2001). [CrossRef]
  6. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-Dimensional superlattice of molecularly linked metal clusters,” Science273, 1690–1693 (1996). [CrossRef]
  7. A. L. Rogach, “Binary superlattices of nanoparticles: self-assembly leads to metamaterials,” Adv. Funct. Mater.43, 148–149 (2004).
  8. E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O’Brien, and C. B. Murray, “Structural diversity in binary nanoparticle superlattices,” Nature (London)439, 55–59 (2006). [CrossRef]
  9. J. J. Urban, D. V. Talapin, E. V. Shevchenko, C. R. Kagan, and C. B. Murray, “Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films,” Nat. Mater.6, 115–121 (2007). [CrossRef] [PubMed]
  10. A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, and C. B. Murray, “Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface,” Nature (London)446, 474–477 (2010). [CrossRef]
  11. W. H. Evers, H. Friedrich, L. Filion, M. Dijkstra, and D. Vanmaekelbergh, “Observation of a ternary nanocrystal superlattice and its structural characterization by electron tomography,” Angew. Chem. Int. Ed.48, 9655–9657 (2009). [CrossRef]
  12. Y. G. Zhao, A. Wu, H. L. Lu, S. Chang, W. K. Lu, S. T. Ho, M. E. van der Boom, and T. J. Marks, “Traveling wave electro-optic phase modulators based on intrinsically polar self-assembled chromophoric superlattices,” Appl. Phys. Lett.79, 587–589 (2001). [CrossRef]
  13. D. G. Suna, Z. Liub, J. Mab, and S. T. Hob, “Design and fabrication of electro-optic waveguides with self-assembled superlattice films,” Opt. Laser Technol.39, 285–289 (2007). [CrossRef]
  14. A. Alu and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express17, 5723–5730 (2009). [CrossRef] [PubMed]
  15. A. Alu and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A: Pure Appl. Opt.10, 093002 (2008). [CrossRef]
  16. A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission line,” Phys. Rev. B74, 205436 (2006). [CrossRef]
  17. B. Auguie and W. L. Barnes, “Collective resonances in Gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008). [CrossRef] [PubMed]
  18. A. L. Fructos, S. Campione, F. Capolino, and F. Mesa, “Characterization of complex plasmonic modes in two-dimensional periodic arrays of metal nanospheres,” J. Opt. Soc. Am. B28, 1446–1458 (2011). [CrossRef]
  19. A. Taleb, V. Russier, A. Courty, and M. P. Pileni, “Collective optical properties of silver nanoparticles organized in two-dimensional superlattices,” Phys. Rev. B59, 13350–13358 (1999). [CrossRef]
  20. D. V. Tapalin, E. V. Shevchenko, C. B. Murray, A. V. Titov, and Petr Kral, “Dipole-dipole interactions in nanoparticle superlattices,” Nano Lett.7, 1213–1219 (2007). [CrossRef]
  21. A. Alu, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express14, 1557–1567 (2006). [CrossRef] [PubMed]
  22. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett.99, 017401 (2007). [CrossRef] [PubMed]
  23. A. Valecchi and F. Capolino, “Metamaterials based on pairs of tightly-coupled scatterers,” in Metamaterials Handbook (CRC Press, 2009).
  24. S. Steshenko, F. Capolino, S. Tretyakov, C. Simovski, and F. Capolino, “Super resolution with layers of resonant arrays of nanoparticles,” in Metamaterials Handbook (CRC Press, 2009).
  25. S. Campione, S. Steshenko, and F. Capolino, “Complex bound and leaky modes in chains of plasmonic nanospheres,” Opt. Express19, 18345–18363 (2011). [CrossRef] [PubMed]
  26. A. Alu and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. A23, 571–583 (2006). [CrossRef]
  27. I. Romero and F. J. Garcia de Abajo, “Anisotropy and particle-size effects in nanostructured plasmonic metamaterials,” Opt. Express17, 22012–22022 (2009). [CrossRef] [PubMed]
  28. C. L. Holloway, E. F. Kuster, J. B. Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag.51, 2596–2603 (2003). [CrossRef]
  29. J. Liu and N. Bowler, “Analysis of double-negative (DNG) bandwidth for a metamaterial composed of magnetodielectric spherical particleseEmbedded in a matrix,” IEEE Antennas Wirel. Propag. Lett.10, 399–402 (2011). [CrossRef]
  30. N. Liu, S. Mukherjee, K. Bao, L. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett.12, 364–369 (2012). [CrossRef]
  31. S. N. Sheikholeslami, A. Garcia-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett.11, 3927–3934 (2011). [CrossRef] [PubMed]
  32. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Monaharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticles clusters,” Science328, 1135–1137 (2010). [CrossRef] [PubMed]
  33. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10, 3184–3189 (2010). [CrossRef] [PubMed]
  34. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. A73, 1105–1112 (1983). [CrossRef]
  35. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65, 195104 (2002). [CrossRef]
  36. A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas.19, 377–379 (1970). [CrossRef]
  37. C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77, 195328 (2008). [CrossRef]
  38. Q. Cao, P. Lalanne, and J. P. Hugonin, “Stable and efficient Bloch-mode computational method for one-dimensional grating waveguides,” J. Opt. Soc. Am. A19, 335–338 (2002). [CrossRef]
  39. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett.25, 1092–1094 (2000). [CrossRef]
  40. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary grating,” J. Opt. Soc. Am. A12, 1068–1076 (1995). [CrossRef]
  41. M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEE Proc.-Sci. Meas. Technol.151, 327–334 (2004). [CrossRef]
  42. R. E. Collin, Foundations for Microwave Engineering (IEEE, 2001). [CrossRef]
  43. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  44. R. C. McPhedran and D. R. McKenzie, “Exact modelling of cubic lattice permittivity and conductivity,” Nature (London)265, 128–129 (1977). [CrossRef]
  45. R. C. McPhedran and D. R. McKenzie, “The conductivity of lattices of spheres I. the simple cubic lattice,” Proc. R. Soc. London Ser. A359, 45–63 (1978). [CrossRef]
  46. R. C. McPhedran, D. R. McKenzie, and G. H. Derrick, “The conductivity of lattices of spheres II. the body centred and face centred cubic lattice,” Proc. R. Soc. London Ser. A362, 211–232 (1978). [CrossRef]
  47. T. Koschny, P. Marko, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E68, 065602 (2003). [CrossRef]
  48. R. Merlin, “Metamaterials and the Landau Lifshitz permeability argument: Large permittivity begets high-frequency magnetism,” Proc. Nat. Acad. Sci. USA106, 1693–1698 (2009). [CrossRef] [PubMed]
  49. J. L. Atweeod, “Kagome’ lattice: a molecular toolkit for magnetism,” Nat. Matter.1, 91–92 (2002). [CrossRef]
  50. U. Schlickum, R. Decker, F. Klappenberger, G. Zoppellaro, S. Klyatskaya, W. Auwarter, S. Neppl, K. Kern, H. Brune, M. Ruben, and J. V. Barth, “Chiral Kagome’ lattice from simple ditopic molecular bricks,” J. Am. Chem. Soc.130, 11778–11782 (2008). [CrossRef] [PubMed]
  51. Q. Chen, S. C. Bae, and S. Granick, “Directed self-assembly of a colloidal Kagome lattice,” Nature (London)469, 381–384 (2010). [CrossRef]
  52. A. V. Giannopoulos, C. M. Long, and K. D. Choquette, “Photonic crystal heterostructure cavity lasers using kagome lattices,” Electron. Lett.44, 38–39 (2008). [CrossRef]
  53. X. Li, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, “Magnetism of two-dimensional triangular nanoflake-based kagome lattices,” New J. Phys.14, 033043 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited