OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15797–15806

Multipolar second harmonic generation from planar arrays of Au nanoparticles

Antonio Capretti, Gary F. Walsh, Salvatore Minissale, Jacob Trevino, Carlo Forestiere, Giovanni Miano, and Luca Dal Negro  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15797-15806 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3050 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate optical Second Harmonic Generation (SHG) in planar arrays of cylindrical Au nanoparticles arranged in periodic and deterministic aperiodic geometries. In order to understand the respective roles of near-field plasmonic coupling and long-range photonic interactions on the SHG signal, we systematically vary the interparticle separation from 60 nm to distances comparable to the incident pump wavelength. Using polarization-resolved measurements under femtosecond pumping, we demonstrate multipolar SHG signal largely tunable by the array geometry. Moreover, we show that the SHG signal intensity is maximized by arranging Au nanoparticles in aperiodic spiral arrays. The possibility to engineer multipolar SHG in planar arrays of metallic nanoparticles paves the way to the development of novel optical elements for nanophotonics, such as nonlinear optical sensors, compact frequency converters, optical mixers, and broadband harmonic generators on a chip.

© 2012 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(260.3910) Physical optics : Metal optics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Nonlinear Optics

Original Manuscript: April 16, 2012
Revised Manuscript: June 17, 2012
Manuscript Accepted: June 18, 2012
Published: June 27, 2012

Antonio Capretti, Gary F. Walsh, Salvatore Minissale, Jacob Trevino, Carlo Forestiere, Giovanni Miano, and Luca Dal Negro, "Multipolar second harmonic generation from planar arrays of Au nanoparticles," Opt. Express 20, 15797-15806 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008). [CrossRef]
  2. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 601–626 (2008). [CrossRef] [PubMed]
  3. C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B27(4), 1965–1979 (1983). [CrossRef]
  4. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986). [CrossRef] [PubMed]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  6. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).
  7. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process.47(4), 347–357 (1988). [CrossRef]
  8. C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett.46(2), 145–148 (1981). [CrossRef]
  9. G. S. Agarwal and S. S. Jha, “Theory of second harmonic generation at a metal surface with surface plasmon excitation,” Solid State Commun.41(6), 499–501 (1982). [CrossRef]
  10. isJ. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett.83(20), 4045–4048 (1999). [CrossRef]
  11. P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B Condens. Matter33(12), 8254–8263 (1986). [CrossRef] [PubMed]
  12. P. Guyot-Sionnest and Y. R. Shen, “Local and nonlocal surface nonlinearities for surface optical second-harmonic generation,” Phys. Rev. B Condens. Matter35(9), 4420–4426 (1987). [CrossRef] [PubMed]
  13. B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B68(3), 419–423 (1999). [CrossRef]
  14. B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A, Pure Appl. Opt.7(2), S110–S117 (2005). [CrossRef]
  15. M. D. McMahon, R. Lopez, R. F. Jr, E. A. Haglund, Ray, and P. H. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B73(4), 041401 (2006). [CrossRef]
  16. M. D. McMahon, D. Ferrara, C. T. Bowie, R. Lopez, and R. F. Haglund, “Second harmonic generation from resonantly excited arrays of gold nanoparticles,” Appl. Phys. B87(2), 259–265 (2007). [CrossRef]
  17. C. Awada, F. Kessi, Ch. Jonin, P. M. Adam, S. Kostcheev, R. Bachelot, P. Royer, I. Russier-Antoine, E. Benichou, G. Bachelier, and P.-F. Brevet, “On- and off-axis second harmonic generation from an array of gold metallic nanocylinders,” J. Appl. Phys.110(2), 023109 (2011). [CrossRef]
  18. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007). [CrossRef] [PubMed]
  19. R. Boyd, Nonlinear optics (Academic Press, 2003).
  20. M. Breit, V. A. Podolskiy, S. Gresillon, G. von Plessen, J. Feldmann, J. C. Rivoal, P. Gadenne, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metal films,” Phys. Rev. B64(12), 125106 (2001). [CrossRef]
  21. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express16(8), 5544–5555 (2008). [CrossRef] [PubMed]
  22. L. Dal Negro, N.-N. Feng, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A, Pure Appl. Opt.10(6), 064013 (2008). [CrossRef]
  23. A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett.8(8), 2423–2431 (2008). [CrossRef] [PubMed]
  24. L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser. Photon. Rev.6(2), 178–218 (2012). [CrossRef]
  25. J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011). [CrossRef] [PubMed]
  26. J. Trevino, S. F. Liew, H. Noh, H. Cao, and L. Dal Negro, “Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals,” Opt. Express20(3), 3015–3033 (2012). [CrossRef] [PubMed]
  27. S. F. Liew, H. Noh, J. Trevino, L. D. Negro, and H. Cao, “Localized photonic bandedge modes and orbital angular momenta of light in a golden-angle spiral,” Opt. Express19(24), 23631–23642 (2011). [CrossRef] [PubMed]
  28. A. Doicu, T. Wriedt, and Y. Eremin, Light scattering by system of particles (Springer-Verlag, 2006).
  29. C. Forestiere, G. Iadarola, L. Dal Negro, and G. Miano, “Near field calculation based on the T-matrix method with discrete sources,” J. Quant. Spectrosc. Radiat. Transf.112(14), 2384–2394 (2011). [CrossRef]
  30. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 6.
  31. G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B28(2), 253–264 (2011). [CrossRef]
  32. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B71(16), 165407 (2005). [CrossRef]
  33. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B25(6), 955–960 (2008). [CrossRef]
  34. J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles,” Phys. Rev. Lett.105(7), 077401 (2010). [CrossRef] [PubMed]
  35. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett.12(3), 1697–1701 (2012). [CrossRef] [PubMed]
  36. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett.98(16), 167403 (2007). [CrossRef] [PubMed]
  37. Y. L. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt.34(21), 4573–4588 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited