OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15826–15832

Retrieving quasi-phase-matching structure with discrete layer-peeling method

Q. W. Zhang, X. L. Zeng, M. Wang, T. Y. Wang, and X. F. Chen  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15826-15832 (2012)
http://dx.doi.org/10.1364/OE.20.015826


View Full Text Article

Enhanced HTML    Acrobat PDF (1272 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An approach to reconstruct a quasi-phase-matching grating by using a discrete layer-peeling algorithm is presented. Experimentally measured output spectra of Šolc-type filters, based on uniform and chirped QPM structures, are used in the discrete layer-peeling algorithm. The reconstructed QPM structures are in agreement with the exact structures used in the experiment and the method is verified to be accurate and efficient in quality inspection on quasi-phase-matching grating.

© 2012 OSA

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 23, 2012
Revised Manuscript: June 19, 2012
Manuscript Accepted: June 21, 2012
Published: June 27, 2012

Citation
Q. W. Zhang, X. L. Zeng, M. Wang, T. Y. Wang, and X. F. Chen, "Retrieving quasi-phase-matching structure with discrete layer-peeling method," Opt. Express 20, 15826-15832 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15826


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmoic Generation,” IEEE J. Quantum Electron.30, 1596–1604 (1994). [CrossRef]
  2. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278, 843–846 (1997). [CrossRef]
  3. M. Charbonneau-Lefort, M. M. Fejer, and B. Afeyan,“Tandem chirped quasi-phase-matching grating optical parametric amplifier design for simultaneous group delay and gain control,” Opt. Lett.30, 634–636 (2005). [CrossRef] [PubMed]
  4. J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasiphase-matched interactions,” Opt. Lett.31, 604–606 (2006). [CrossRef] [PubMed]
  5. T. Umeki, M. Asobe, T. Yanagawa, O. Tadanaga, Y. Nishida, K. Magari, and H. Suzuki, “Broadband wavelength conversion based on apodized χ(2) grating,” J. Opt. Soc. Am. B26, 2315–2322 (2009). [CrossRef]
  6. X. Zeng, S. Ashihara, Z. Wang, T. Wang, Y. Chen, and M. Cha, “Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure, ” Opt. Express17, 16877–16884 (2009). [CrossRef] [PubMed]
  7. Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H. Chou, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate,” Opt. Lett.27, 2191–2193 (2002). [CrossRef]
  8. X. Zeng, X. Chen, F. Wu, Y. Chen, Y. Xia, and Y. Chen, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun.204, 407–411 (2002). [CrossRef]
  9. A. M. Schober, G. Imeshev, and M. M. Fejer, “Tunable-chirp pulse compression in quasi-phase-matched second-harmonic generation,” Opt. Lett.27, 1129–1131 (2002). [CrossRef]
  10. K. Beckwitt, F. Ö. Ilday, and F. W. Wise, “Frequency shifting with local nonlinearity management in nonuniformly poled quadratic nonlinear materials,” Opt. Lett.29, 763–765 (2004). [CrossRef] [PubMed]
  11. X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008). [CrossRef]
  12. H. Miao, S. Yang, C. Langrock, R. V. Roussev, M. M. Fejer, and A. M. Weiner, “Ultralow-power second-harmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides,” J. Opt. Soc. Am. B25, A41–A53 (2008). [CrossRef]
  13. J. Shaar, L. G. Wang, and T. Erdogan, “On the synthesis of fiber bragg gratings by layer peeling,” IEEE J. Quantum Electron.37, 165–173 (2001). [CrossRef]
  14. J. Zhang, P. Shum, S. Y. Li, N. Q. Ngo, X. P. Cheng, and J. H. Ng, “Design and fabrication of flat-band long-period grating,” IEEE Photon. Technol. Lett.15, 1558–1560 (2003). [CrossRef]
  15. H. Li, T. Kumagai, and K. Ogusu, “Advanced design of a multichannel fiber Bragg grating based on a layer-peeling method,” J. Opt. Soc. Am. B21, 1929–1938 (2004). [CrossRef]
  16. Y. Choi, J. Chun, and J. Bae, “Numerically extrapolated discrete layer-peeling algorithm for synthesis of nonuniform fiber Bragg gratings,” Opt. Express19, 8254–8266 (2011). [CrossRef] [PubMed]
  17. E. C. Levy and M. Horowitz, “Layer-peeling algorithm for reconstructing the birefringence in optical emulators,” J. Opt. Soc. Am. B23, 1531–1539 (2006). [CrossRef]
  18. X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Šolc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett.28, 2115–2117 (2003). [CrossRef] [PubMed]
  19. Y. Q. Lu and Z. L. Wan, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77, 3719–3721 (2000). [CrossRef]
  20. Q. Zhang, X. Zeng, F. Pang, X. Chen, and T. Wang, “Tunable polarization-independent Šolc-type wavelength filter based on periodically poled lithium niobate,” Opt. Laser Technol.44, 1992–1994 (2012). [CrossRef]
  21. C. H. Lin, Y. H. Chen, S. W. Lin, C. L. Chang, Y. C. Huang, and J. Y. Chang, “Electro-optic narrowband multi-wavelength filter in aperiodically poled lithium niobate,” Opt. Express15, 9859–9866 (2007). [CrossRef] [PubMed]
  22. X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, “Narrowband multiple wavelengths filter in aperiodic optical superlattice,” Opt. Commun.237, 53–58 (2004). [CrossRef]
  23. C. L. Chang, Y. H. Chen, C. H. Lin, and J. Y. Chang, “Monolithically integrated multi-wavelength filter and second harmonic generator in aperiodically poled lithium niobate,” Opt. Express16, 18535–18544 (2008). [CrossRef] [PubMed]
  24. Y. L. Lee, Y. C. Noh, C. S. Kee, N. E. Yu, W. Shin, C. Jung, D. K. Ko, and J. Lee, “Bandwidth control of a Ti:PPLN Šolc filter by a temperature-gradient-control technique,” Opt. Express16, 13699–13706 (2008). [CrossRef] [PubMed]
  25. C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, “Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter,” Opt. Express15, 2548–2554 (2007). [CrossRef] [PubMed]
  26. C. S. Kee, Y. L. Lee, and J. Lee, “Electro- and thermo-optic effects on multi-wavelength Šolc filters based on χ(2) nonlinear quasi-periodic photonic crystals,” Opt. Express16, 6098–6103 (2008). [CrossRef] [PubMed]
  27. J. K. Brenne and J. Skaar, “Design of grating-assisted codirectional couplers with discrete inverse-scattering algorithms,” J. Lightwave. Technol.21, 254–263 (2003). [CrossRef]
  28. G. Lenz, B. J. Eggleton, and C. R. Giles, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron.34, 1390–1402 (1998). [CrossRef]
  29. L. Wang and T. Erdogan, “Layer peeling algorithm for reconstruction of long-period fibre gratings,” Electron. Lett.37, 154–156 (2001). [CrossRef]
  30. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15, 1277–1294 (1997). [CrossRef]
  31. R. Feced and M. N. Zervas, “Efficient inverse scattering algorithm for the design of grating-assisted co-directional mode couplers,” J. Opt. Soc. Am. A17, 1573–1582 (2000). [CrossRef]
  32. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited