OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15859–15871

Geometry and composition comparisons between c-plane disc-like and m-plane core-shell InGaN/GaN quantum wells in a nitride nanorod

Che-Hao Liao, Wen-Ming Chang, Horng-Shyang Chen, Chih-Yen Chen, Yu-Feng Yao, Hao-Tsung Chen, Chia-Ying Su, Shao-Ying Ting, Yean-Woei Kiang, and C. C. Yang  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15859-15871 (2012)
http://dx.doi.org/10.1364/OE.20.015859


View Full Text Article

Enhanced HTML    Acrobat PDF (1714 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With the nano-imprint lithography and the pulsed growth mode of metalorganic chemical vapor deposition, a regularly-patterned, c-axis nitride nanorod (NR) array of quite uniform geometry with simultaneous depositions of top-face, c-plane disc-like and sidewall, m-plane core-shell InGaN/GaN quantum well (QW) structures is formed. The differences of geometry and composition between these two groups of QW are studied with scanning electron microscopy, cathodoluminescence, and transmission electron microscopy (TEM). In particular, the strain state analysis results in TEM observations provide us with the information about the QW width and composition. It is found that the QW widths are narrower and the indium contents are higher in the sidewall m-plane QWs, when compared with the top-face c-plane QWs. Also, in the sidewall m-plane QWs, the QW width (indium content) decreases (increases) with the height on the sidewall. The observed results can be interpreted with the migration behaviors of the constituent atoms along the NR sidewall from the bottom.

© 2012 OSA

OCIS Codes
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: May 10, 2012
Manuscript Accepted: June 20, 2012
Published: June 27, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Che-Hao Liao, Wen-Ming Chang, Horng-Shyang Chen, Chih-Yen Chen, Yu-Feng Yao, Hao-Tsung Chen, Chia-Ying Su, Shao-Ying Ting, Yean-Woei Kiang, and C. C. Yang, "Geometry and composition comparisons between c-plane disc-like and m-plane core-shell InGaN/GaN quantum wells in a nitride nanorod," Opt. Express 20, 15859-15871 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15859


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth,” J. Appl. Phys.106(2), 023521 (2009). [CrossRef]
  2. R. Colby, Z. Liang, I. H. Wildeson, D. A. Ewoldt, T. D. Sands, R. E. García, and E. A. Stach, “Dislocation filtering in GaN nanostructures,” Nano Lett.10(5), 1568–1573 (2010). [CrossRef] [PubMed]
  3. H. S. Chen, D. M. Yeh, Y. C. Lu, C. Y. Chen, C. F. Huang, T. Y. Tang, C. C. Yang, C. S. Wu, and C. D. Chen, “Strain relaxation and quantum confinement in InGaN/GanN nanoposts,” Nanotechnology17(5), 1454–1458 (2006). [CrossRef]
  4. C. Y. Wang, L. Y. Chen, C. P. Chen, Y. W. Cheng, M. Y. Ke, M. Y. Hsieh, H. M. Wu, L. H. Peng, and J. J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Opt. Express16(14), 10549–10556 (2008). [CrossRef] [PubMed]
  5. C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN/GaN quantum-well structures,” Appl. Phys. Lett.89(5), 051913 (2006). [CrossRef]
  6. R. Koester, J. S. Hwang, D. Salomon, X. Chen, C. Bougerol, J. P. Barnes, D. S. Dang, L. Rigutti, A. de Luna Bugallo, G. Jacopin, M. Tchernycheva, C. Durand, and J. Eymery, “M-plane core-shell InGaN/GaN multiple-quantum-wells on GaN wires for electroluminescent devices,” Nano Lett.11(11), 4839–4845 (2011). [CrossRef] [PubMed]
  7. Y. J. Hong, C. H. Lee, A. Yoon, M. Kim, H. K. Seong, H. J. Chung, C. Sone, Y. J. Park, and G. C. Yi, “Visible-color-tunable light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)23(29), 3284–3288 (2011). [CrossRef] [PubMed]
  8. M. D. Craven, P. Waltereit, J. S. Speck, and S. P. DenBaars, “Well-width dependence of photoluminescence emission from a-plane GaN/AlGaN multiple quantum wells,” Appl. Phys. Lett.84(4), 496–498 (2004). [CrossRef]
  9. N. Fellows, H. Sato, H. Masui, S. P. Denbaars, and S. Nakamura, “Increased polarization ratio on semipolar (11-22) InGaN/GaN light-emitting diodes with increasing indium composition,” Jpn. J. Appl. Phys.47(10), 7854–7856 (2008). [CrossRef]
  10. H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett.96(23), 231104 (2010). [CrossRef]
  11. W. Bergbauer, M. Strassburg, Ch. Kölper, N. Linder, C. Roder, J. Lähnemann, A. Trampert, S. Fündling, S. F. Li, H. H. Wehmann, and A. Waag, “Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells,” Nanotechnology21(30), 305201 (2010). [CrossRef] [PubMed]
  12. Q. Li and G. T. Wang, “Spatial distribution of defect luminescence in GaN nanowires,” Nano Lett.10(5), 1554–1558 (2010). [CrossRef] [PubMed]
  13. M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays,” IEEE J. Sel. Top. Quantum Electron.15(4), 1242–1249 (2009). [CrossRef]
  14. T.-Y. Tang, W.-Y. Shiao, C.-H. Lin, K.-C. Shen, J.-J. Huang, S.-Y. Ting, T.-C. Liu, C. C. Yang, C.-L. Yao, J.-H. Yeh, T.-C. Hsu, W.-C. Chen, H.-C. Hsu, and L.-C. Chen, “Coalescence overgrowth of GaN nanocolumns on sapphire with patterned metal organic vapor phase epitaxy,” J. Appl. Phys.105(2), 023501 (2009). [CrossRef]
  15. T.-Y. Tang, C.-H. Lin, Y.-S. Chen, W.-Y. Shiao, W.-M. Chang, C.-H. Liao, K.-C. Shen, C.-C. Yang, M.-C. Hsu, J.-H. Yeh, and T.-C. Hsu, “Nitride nanocolumns for the development of light-emitting diode,” IEEE Trans. Electron. Dev.57(1), 71–78 (2010). [CrossRef]
  16. H. Lahrèche, P. Vennéguès, O. Tottereau, M. Laügt, P. Lorenzini, M. Leroux, B. Beaumont, and P. Gibart, “Optimisation of AlN and GaN growth by metalorganic vapour-phase epitaxy (MOVPE) on Si (1 1 1),” J. Cryst. Growth217(1-2), 13–25 (2000). [CrossRef]
  17. L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo, and K. Y. Hsieh, “Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy,” Appl. Phys. Lett.82(10), 1601–1602 (2003). [CrossRef]
  18. C. Chèze, L. Geelhaar, B. Jenichen, and H. Riechert, “Different growth rates for catalyst-induced and self-induced GaN nanowires,” Appl. Phys. Lett.97(15), 153105 (2010). [CrossRef]
  19. T. Song, W. I. Park, and U. Paik, “Epitaxial growth of one-dimensional GaN nanostructures with enhanced near-band edge emission by chemical vapor deposition,” Appl. Phys. Lett.96(1), 011105 (2010). [CrossRef]
  20. X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, “Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates,” Appl. Phys. Lett.97(15), 151909 (2010). [CrossRef]
  21. Y. Kawakami, S. Suzuki, A. Kaneta, M. Funato, A. Kikuchi, and K. Kishino, “Origin of high oscillator strength in green-emitting InGaN/GaN nanocolumns,” Appl. Phys. Lett.89(16), 163124 (2006). [CrossRef]
  22. K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth311(7), 2063–2068 (2009). [CrossRef]
  23. S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett.6(8), 1808–1811 (2006). [CrossRef] [PubMed]
  24. W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett.10(9), 3355–3359 (2010). [CrossRef] [PubMed]
  25. W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett.98(19), 193102 (2011). [CrossRef]
  26. H. Lin, Y. Lu, H. Chen, H. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett.97(7), 073101 (2010). [CrossRef]
  27. K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa, “Selective growth of InGaN quantum dot structures and their microphotoluminescence at room temperature,” Appl. Phys. Lett.76(22), 3212–3214 (2000). [CrossRef]
  28. P. R. Edwards, R. W. Martin, I. M. Watson, C. Liu, R. A. Taylor, J. H. Rice, J. H. Na, J. W. Robinson, and J. D. Smith, “Quantum dot emission from site-controlled InGaN/GaN micropyramid arrays,” Appl. Phys. Lett.85(19), 4281–4283 (2004). [CrossRef]
  29. X. Wang, X. Sun, M. Fairchild, and S. D. Hersee, “Fabrication of GaN nanowire arrays by confined epitaxy,” Appl. Phys. Lett.89(23), 233115 (2006). [CrossRef]
  30. W. H. Goh, G. Patriarche, P. L. Bonanno, S. Gautier, T. Moudakir, M. Abid, G. Orsal, A. A. Sirenko, Z. H. Cai, A. Martinez, A. Ramdane, L. Le Gratiet, D. Troadec, A. Soltani, and A. Ougazzaden, “Structural and optical properties of nanodots, nanowires, and multi-quantum wells of III-nitride grown by MOVPE nano-selective area growth,” J. Cryst. Growth315(1), 160–163 (2011). [CrossRef]
  31. W. Bergbauer, M. Strassburg, C. Kolper, N. Linder, C. Roder, J. Lahnemann, A. Trampert, S. Fundling, S. F. Li, H.-H. Wehmann, and A. Waag, “N-face GaN nanorods: Continuous-flux MOVPE growth and morphological properties,” J. Cryst. Growth315(1), 164–167 (2011). [CrossRef]
  32. F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett.4(10), 1975–1979 (2004). [CrossRef]
  33. S. K. Lim, M. Brewster, F. Qian, Y. Li, C. M. Lieber, and S. Gradecak, “Direct correlation between structural and optical properties of III-V nitride nanowire heterostructures with nanoscale resolution,” Nano Lett.9(11), 3940–3944 (2009). [CrossRef] [PubMed]
  34. A. D. L. Bugallo, L. Rigutti, G. Jacopin, F. H. Julien, C. Durand, X. J. Chen, D. Salomon, J. Eymery, and M. Tchernycheva, “Single-wire photodetectors based on InGaN/GaN radial quantum wells in GaN wires grown by catalyst-free metal-organic vapor phase epitaxy,” Appl. Phys. Lett.98(23), 233107 (2011). [CrossRef]
  35. G. Jacopin, A. D. L. Bugallo, P. Lavenus, L. Rigutti, F. H. Jullien, L. F. Zagonel, M. Kociak, C. Durand, D. Salomon, X. J. Chen, J. Eymery, and M. Tchernycheva, “Single-wire light-emitting diodes based on GaN wires containing both polar and nonpolar InGaN/GaN quantum wells,” Appl. Phys. Express5(1), 014101 (2012). [CrossRef]
  36. I.-H. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett.69(18), 2701–2703 (1996). [CrossRef]
  37. D. Gerthsen, E. Hahn, B. Neubauer, V. Potin, A. Rosenauer, and M. Schowalter, “Indium distribution in epitaxially grown InGaN layers analyzed by transmission electron microscopy,” Phys. Stat. Solidi C0(6), 1668–1683 (2003). [CrossRef]
  38. Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission electron microscopy study on pre-strained InGaN/GaN quantum wells,” J. Cryst. Growth297(1), 66–73 (2006). [CrossRef]
  39. Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.77(19), 2988–2990 (2000). [CrossRef]
  40. Y. C. Cheng, E. C. Lin, C. M. Wu, C. C. Yang, J. R. Yang, A. Rosenauer, K. J. Ma, S. C. Shi, L. C. Chen, C. C. Pan, and J. I. Chyi, “Nanostructures and carrier localization behaviors of green-luminescence InGaN/GaN quantum-well structures of various silicon-doping conditions,” Appl. Phys. Lett.84(14), 2506–2508 (2004). [CrossRef]
  41. R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Luth, “Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111),” Appl. Phys. Lett.90(12), 123117 (2007). [CrossRef]
  42. J. Ristić, E. Calleja, S. Fernandez-Garrido, L. Cerutti, A. Trampert, U. Jahn, and K. H. Ploog, “On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy,” J. Cryst. Growth310(18), 4035–4045 (2008). [CrossRef]
  43. S. K. Lim, M. J. Tambe, M. M. Brewster, and S. Gradecak, “Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition,” Nano Lett.8(5), 1386–1392 (2008). [CrossRef] [PubMed]
  44. R. L. Woo, L. Gao, N. Goel, M. K. Hudait, K. L. Wang, S. Kodambaka, and R. F. Hicks, “Kinetic control of self-catalyzed indium phosphide nanowires, nanocones, and nanopillars,” Nano Lett.9(6), 2207–2211 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited