OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15962–15968

Determining particle size distributions from a single projection image

R. P. Carnibella, M. J. Kitchen, and A. Fouras  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15962-15968 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (817 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Imaging techniques employed to measure the structure of granular, particulate and porous materials are limited by scale, temporal resolution and, for biological samples, radiation exposure. This paper describes a technique for determining the distribution of particle sizes in opaque samples, for particle volume fractions less than ten percent, using a single projection radiograph. The method is based on the derived property of the additivity of the particles’ spatial autocorrelation function in projection images. Simulations and experiments demonstrate the ability to use this property to determine the distribution of particle sizes in a material.

© 2012 OSA

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(100.2960) Image processing : Image analysis
(110.7440) Imaging systems : X-ray imaging
(350.4990) Other areas of optics : Particles

ToC Category:
Imaging Systems

Original Manuscript: March 19, 2012
Revised Manuscript: May 25, 2012
Manuscript Accepted: May 28, 2012
Published: June 28, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

R. P. Carnibella, M. J. Kitchen, and A. Fouras, "Determining particle size distributions from a single projection image," Opt. Express 20, 15962-15968 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Davis, “Ordered porous materials for emerging applications,” Nature417(6891), 813–821 (2002). [CrossRef] [PubMed]
  2. H. A. Makse, S. Havlin, P. R. King, and H. E. Stanley, “Spontaneous stratification in granular mixtures,” Nature386(6623), 379–382 (1997). [CrossRef]
  3. C. N. Davies, Aerosol Science, First ed. (Academic Press, 1966).
  4. R. A. Dobbins, L. Crocco, and I. Glassmans, “Measurement of Mean Particle Sizes of Sprays from Diffractively Scattered Light,” AIAA J.1(8), 1882–1886 (1963). [CrossRef]
  5. B. P. Flannery, H. W. Deckman, W. G. Roberge, and K. L. D’Amico, “Three-Dimensional X-ray Microtomography,” Science237(4821), 1439–1444 (1987). [CrossRef] [PubMed]
  6. T. Narayanan, O. Diat, and P. Bösecke, “SAXS and USAXS on the high brilliance beamline at the ESRF,” Nucl. Instrum. Meth. A467–468, 1005–1009 (2001). [CrossRef]
  7. L. Rigon, H.-J. Besch, F. Arfelli, R.-H. Menk, G. Heitner, and H. Plothow-Besch, “A new DEI algorithm capable of investigating sub-pixel structures,” J. Phys. D Appl. Phys.36(10A), A107–A112 (2003). [CrossRef]
  8. H. Suhonen, M. Fernández, A. Bravin, J. Keyriläinen, and P. Suortti, “Refraction and scattering of X-rays in analyzer-based imaging,” J. Synchrotron Radiat.14(6), 512–521 (2007). [CrossRef] [PubMed]
  9. R. Cerbino, L. Peverini, M. A. C. Potenza, A. Robert, P. Bosecke, and M. Giglio, “X-ray-scattering information obtained from near-field speckle,” Nat. Phys.4(3), 238–243 (2008). [CrossRef]
  10. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high‐energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995). [CrossRef]
  11. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996). [CrossRef]
  12. M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol.49(18), 4335–4348 (2004). [CrossRef] [PubMed]
  13. M. D. Alaimo, D. Magatti, F. Ferri, and M. A. C. Potenza, “Heterodyne speckle velocimetry,” Appl. Phys. Lett.88(19), 191101 (2006). [CrossRef]
  14. A. Fouras, J. Dusting, R. Lewis, and K. Hourigan, “Three-dimensional synchrotron x-ray particle image velocimetry,” J. Appl. Phys.102(6), 064916 (2007). [CrossRef]
  15. A. Fouras, D. Lo Jacono, C. V. Nguyen, and K. Hourigan, “Volumetric correlation PIV: a new technique for 3D velocity vector field measurement,” Exp. Fluids47(4-5), 569–577 (2009). [CrossRef]
  16. S. Dubsky, R. A. Jamison, S. C. Irvine, K. K. W. Siu, K. Hourigan, and A. Fouras, “Computed tomographic x-ray velocimetry,” Appl. Phys. Lett.96(2), 023702 (2010). [CrossRef]
  17. C. V. Nguyen, J. Carberry, and A. Fouras, “Volumetric-correlation PIV to measure particle concentration and velocity of microflows,” Exp. Fluids (in-press).
  18. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002). [CrossRef] [PubMed]
  19. A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics, 4th ed. (Cambridge University Press, 2010).
  20. M. Nieto-Vesperinas, Scattering And Diffraction in Physical Optics, 2nd ed. (World Scientific Pub Co Inc, 2006).
  21. A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum.68(7), 2774–2782 (1997). [CrossRef]
  22. E. L. Crow and K. Shimizu, Lognormal Distributions: Theory and Applications (M. Dekker, 1988).
  23. S. Goto, K. Takeshita, Y. Suzuki, H. Ohashi, Y. Asano, H. Kimura, T. Matsushita, N. Yagi, M. Isshiki, H. Yamazaki, Y. Yoneda, K. Umetani, and T. Ishikawa, “Construction and commissioning of a 215-m-long beamline at SPring-8,” Nucl. Instrum. Meth. A467–468, 682–685 (2001). [CrossRef]
  24. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited