OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15969–15982

Live imaging using adaptive optics with fluorescent protein guide-stars

Xiaodong Tao, Justin Crest, Shaila Kotadia, Oscar Azucena, Diana C. Chen, William Sullivan, and Joel Kubby  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15969-15982 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1532 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spatially and temporally dependent optical aberrations induced by the inhomogeneous refractive index of live samples limit the resolution of live dynamic imaging. We introduce an adaptive optical microscope with a direct wavefront sensing method using a Shack-Hartmann wavefront sensor and fluorescent protein guide-stars for live imaging. The results of imaging Drosophila embryos demonstrate its ability to correct aberrations and achieve near diffraction limited images of medial sections of large Drosophila embryos. GFP-polo labeled centrosomes can be observed clearly after correction but cannot be observed before correction. Four dimensional time lapse images are achieved with the correction of dynamic aberrations. These studies also demonstrate that the GFP-tagged centrosome proteins, Polo and Cnn, serve as excellent biological guide-stars for adaptive optics based microscopy.

© 2012 OSA

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:

Original Manuscript: April 23, 2012
Revised Manuscript: June 18, 2012
Manuscript Accepted: June 19, 2012
Published: June 28, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Xiaodong Tao, Justin Crest, Shaila Kotadia, Oscar Azucena, Diana C. Chen, William Sullivan, and Joel Kubby, "Live imaging using adaptive optics with fluorescent protein guide-stars," Opt. Express 20, 15969-15982 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. R. Soc. A–Math. Phys. Eng. Sci.365, 2829–2843 (2007).
  2. R. K. Tyson, Principles of Adaptive Optics (Academic, 1991).
  3. J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications, (Wiley, 2006).
  4. P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express11(10), 1123–1130 (2003). [CrossRef] [PubMed]
  5. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009). [CrossRef] [PubMed]
  6. N. Olivier, D. Débarre, and E. Beaurepaire, “Dynamic aberration correction for multiharmonic microscopy,” Opt. Lett.34(20), 3145–3147 (2009). [CrossRef] [PubMed]
  7. A. Facomprez, E. Beaurepaire, and D. Débarre, “Accuracy of correction in modal sensorless adaptive optics,” Opt. Express20(3), 2598–2612 (2012). [CrossRef] [PubMed]
  8. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006). [CrossRef] [PubMed]
  9. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010). [CrossRef] [PubMed]
  10. D. E. Milkie, E. Betzig, and N. Ji, “Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination,” Opt. Lett.36(21), 4206–4208 (2011). [CrossRef] [PubMed]
  11. M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A.99(9), 5788–5792 (2002). [CrossRef] [PubMed]
  12. O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. Tao, M. Reinig, D. Gavel, S. Olivier, and J. Kubby, “Adaptive optics wide-field microscopy using direct wavefront sensing,” Opt. Lett.36(6), 825–827 (2011). [CrossRef] [PubMed]
  13. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett.36(7), 1062–1064 (2011). [CrossRef] [PubMed]
  14. X. Tao, O. Azucena, M. Fu, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars,” Opt. Lett.36(17), 3389–3391 (2011). [CrossRef] [PubMed]
  15. R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec, O. E. Olarte, M. Nieto, X. Levecq, D. Artigas, and P. Loza-Alvarez, “Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy,” Biomed. Opt. Express2(11), 3135–3149 (2011). [CrossRef] [PubMed]
  16. O. Azucena, X. Tao, J. Crest, S. Kotadia, W. Sullivan, D. Gavel, M. Reinig, S. Olivier, and J. Kubby, “Adaptive optics wide-field microscope corrections using a MEMS DM and Shack-Hartmann wavefront sensor,” Proc. SPIE7931, 79310J (2011). [CrossRef]
  17. M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, New York, 1999).
  18. S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack-Hartmann sensor,” Mon. Not. R. Astron. Soc.371(1), 323–336 (2006). [CrossRef]
  19. L. A. Poyneer, D. T. Gavel, and J. M. Brase, “Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform,” J. Opt. Soc. Am. A19(10), 2100–2111 (2002). [CrossRef]
  20. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).
  21. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, 1998).
  22. M. Schwertner, M. J. Booth, M. A. Neil, and T. Wilson, “Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry,” J. Microsc.213(1), 11–19 (2004). [CrossRef] [PubMed]
  23. O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons,” Opt. Express18(16), 17521–17532 (2010). [CrossRef] [PubMed]
  24. L. A. Poyneer and B. A. Macintosh, “Spatially filtered wave-front sensor for high-order adaptive optics,” J. Opt. Soc. Am. A21(5), 810–819 (2004). [CrossRef] [PubMed]
  25. J. Zhang and T. L. Megraw, “Proper recruitment of gamma-tubulin and D-TACC/Msps to embryonic Drosophila centrosomes requires Centrosomin Motif 1,” Mol. Biol. Cell18(10), 4037–4049 (2007). [CrossRef] [PubMed]
  26. T. Moutinho-Santos, P. Sampaio, I. Amorim, M. Costa, and C. E. Sunkel, “In vivo localisation of the mitotic POLO kinase shows a highly dynamic association with the mitotic apparatus during early embryogenesis in Drosophila,” Biol. Cell91(8), 585–596 (1999). [PubMed]
  27. W. F. Rothwell and W. Sullivan, “Fluorescent analysis of drosophila embryos,” in Drosophila Protocols, W. Sullivan, M. Ashburner and R. S. Hawley, eds. (Cold Spring Harbor Laboratory Press, 2000), pp. 141–157.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3417 KB)     
» Media 2: MOV (3898 KB)     
» Media 3: MOV (2041 KB)     
» Media 4: MOV (1643 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited