OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15991–15996

High-frequency silicon optomechanical oscillator with an ultralow threshold

Wei C. Jiang, Xiyuan Lu, Jidong Zhang, and Qiang Lin  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15991-15996 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2095 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a highly efficient optomechanical oscillator based upon a small silicon microdisk resonator with a 2-μm radius. The device exhibits a strong optomechanical coupling of 115 GHz/nm and a large intrinsic mechanical frequency-Q product of 4.32 × 1012 Hz. It is able to operate at a high frequency of 1.294 GHz with an ultralow threshold of 3.56 μW while working in the air environment. The high efficiency, high frequency together with the structural compactness and CMOS compatibility of our device enables great potential for broad applications in photonic-phononic signal processing, sensing, and metrology.

© 2012 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.4910) Optical devices : Oscillators
(230.4685) Optical devices : Optical microelectromechanical devices
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Optical Devices

Original Manuscript: May 8, 2012
Revised Manuscript: June 17, 2012
Manuscript Accepted: June 18, 2012
Published: June 28, 2012

Wei C. Jiang, Xiyuan Lu, Jidong Zhang, and Qiang Lin, "High-frequency silicon optomechanical oscillator with an ultralow threshold," Opt. Express 20, 15991-15996 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum.76, 061101 (2005). [CrossRef]
  2. C. T.-C. Nguyen, “MEMS technology for timing and frequency control,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54, 251–270 (2007). [CrossRef] [PubMed]
  3. J. T. M. van Beek and R. Puers, “A review of MEMS oscillators for frequency reference and timing applications,” J. Micromech. Microeng.22, 013001 (2012). [CrossRef]
  4. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscopic scale,” Science321, 1172–1176 (2008). [CrossRef] [PubMed]
  5. I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics3, 201–205 (2009). [CrossRef]
  6. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4, 211–217 (2010). [CrossRef]
  7. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett.95, 033901 (2005). [CrossRef] [PubMed]
  8. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature444, 71–74 (2006). [CrossRef] [PubMed]
  9. T. Corbitt, D. Ottaway, E. Innerhofer, J. Pelc, and N. Mavalvala, “Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity,” Phys. Rev. A74, 021802 (2006). [CrossRef]
  10. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–556 (2009). [CrossRef] [PubMed]
  11. M. Eichenfiled, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462, 78–82 (2009).
  12. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103, 103601 (2009). [CrossRef] [PubMed]
  13. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett.102, 043902 (2009). [CrossRef] [PubMed]
  14. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett.102, 113601 (2009). [CrossRef] [PubMed]
  15. I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-Level system,” Phys. Rev. Lett.104, 083901 (2010). [CrossRef] [PubMed]
  16. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett.105, 263903 (2010). [CrossRef]
  17. S. Talhur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express19, 24522–24529 (2011). [CrossRef]
  18. G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun.2, 403 (2011), . [CrossRef] [PubMed]
  19. M. A. Taylor, A. Szorkovszky, J. Knittel, K. H. Lee, T. G. McRae, and W. P. Bowen, “Cavity optoelectromechanical regenerative amplification,” arXiv:1107.0779v1 (2011).
  20. X. Sun, K. Y. Fong, C. Xiong, W. H. P. Pernice, and H. X. Tang, “GHz optomechanical resonators with high mechanical Q factor in air,” Opt. Express19, 22316–22321 (2011). [CrossRef] [PubMed]
  21. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett.98, 113801 (2011).
  22. X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators at gigahertz frequencies,” Appl. Phys. Lett.100, 173116 (2012). [CrossRef]
  23. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics3, 478–483 (2009). [CrossRef]
  24. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics4, 236–242 (2010). [CrossRef]
  25. D. Weinstein and S. A. Bhave, “Internal dielectric transduction of in bulk-mode resonators,” J. Microelectmech. Syst.18, 1401–1408 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited