OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 16010–16016

Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium

Daisuke Akamatsu, Yoshiaki Nakajima, Hajime Inaba, Kazumoto Hosaka, Masami Yasuda, Atsushi Onae, and Feng-Lei Hong  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 16010-16016 (2012)
http://dx.doi.org/10.1364/OE.20.016010


View Full Text Article

Enhanced HTML    Acrobat PDF (1637 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A narrow linewidth diode laser system at 689 nm is realized by phase-locking an extended cavity diode laser to one tooth of a narrow linewidth optical frequency comb. The optical frequency comb is phase-locked to a narrow linewidth laser at 1064 nm, which is frequency stabilized to a high-finesse optical cavity. We demonstrate the magneto-optical trapping of Sr using an intercombination transition with the developed laser system.

© 2012 OSA

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.3425) Lasers and laser optics : Laser stabilization
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 17, 2012
Revised Manuscript: June 17, 2012
Manuscript Accepted: June 25, 2012
Published: June 28, 2012

Citation
Daisuke Akamatsu, Yoshiaki Nakajima, Hajime Inaba, Kazumoto Hosaka, Masami Yasuda, Atsushi Onae, and Feng-Lei Hong, "Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium," Opt. Express 20, 16010-16016 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-16010


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Kraft, F. Vogt, O. Appel, F. Riehle, and U. Sterr, “Bose-Einstein condensation of alkaline earth atoms: 40Ca,” Phys. Rev. Lett.103(13), 130401 (2009). [CrossRef] [PubMed]
  2. S. Stellmer, M. K. Tey, B. Huang, R. Grimm, and F. Schreck, “Bose-Einstein condensation of strontium,” Phys. Rev. Lett.103(20), 200401 (2009). [CrossRef] [PubMed]
  3. Y. de Escobar, P. Mickelson, M. Yan, B. DeSalvo, S. Nagel, and T. Killian, “Bose-Einstein condensation of 84Sr,” Phys. Rev. Lett.103(20), 200402 (2009). [CrossRef] [PubMed]
  4. S. Stellmer, M. K. Tey, R. Grimm, and F. Schreck, “Bose-Einstein condensation of 86Sr,” Phys. Rev. A82(4), 041602 (2010). [CrossRef]
  5. B. J. DeSalvo, M. Yan, P. G. Mickelson, Y. N. Martinez de Escobar, and T. C. Killian, “Degenerate Fermi gas of 87Sr,” Phys. Rev. Lett.105(3), 030402 (2010). [CrossRef] [PubMed]
  6. P. G. Mickelson, Y. N. Martinez de Escobar, M. Yan, B. J. DeSalvo, and T. C. Killian, “Bose-Einstein condensation of 88Sr through sympathetic cooling with 87Sr,” Phys. Rev. A81(5), 051601 (2010). [CrossRef]
  7. J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 →3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011). [CrossRef]
  8. C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: Approaching 10−15 relative uncertainty,” Phys. Rev. A72(6), 062111 (2005). [CrossRef]
  9. M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature435(7040), 321–324 (2005). [CrossRef] [PubMed]
  10. A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, “Quantum computing with alkaline-Earth-metal atoms,” Phys. Rev. Lett.101(17), 170504 (2008). [CrossRef] [PubMed]
  11. R. Ciuryło, E. Tiesinga, and P. S. Julienne, “Optical tuning of the scattering length of cold alkaline-earth-metal atoms,” Phys. Rev. A71(3), 030701 (2005). [CrossRef]
  12. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett.82(6), 1116–1119 (1999). [CrossRef]
  13. T. Mukaiyama, H. Katori, T. Ido, Y. Li, and M. Kuwata-Gonokami, “Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature,” Phys. Rev. Lett.90(11), 113002 (2003). [CrossRef] [PubMed]
  14. E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow line laser cooling of 40Ca to near the photon recoil limit,” Phys. Rev. A64(3), 031403 (2001). [CrossRef]
  15. T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett.87(12), 123002 (2001). [CrossRef] [PubMed]
  16. Y. Li, T. Ido, T. Eichler, and H. Katori, “Narrow-line diode laser system for laser cooling of strontium atoms on the intercombination transition,” Appl. Phys. B78(3-4), 315–320 (2004). [CrossRef]
  17. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett.31(20), 3046–3048 (2006). [CrossRef] [PubMed]
  18. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett.29(21), 2467–2469 (2004). [CrossRef] [PubMed]
  19. H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express14(12), 5223–5231 (2006). [CrossRef] [PubMed]
  20. G. Grosche, B. Lipphardt, and H. Schnatz, “Optical frequency synthesis and measurement using fibre-based femtosecond lasers,” Eur. Phys. J. D48(1), 27–33 (2008). [CrossRef]
  21. M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, and F.-L. Hong, “Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium,” J. Opt. Soc. Am. B27(7), 1388–1393 (2010). [CrossRef]
  22. A. Yamaguchi, N. Shiga, S. Nagano, Y. Li, H. Ishijima, H. Hachisu, M. Kumagai, and T. Ido, “Stability transfer between two clock lasers operating at different wavelengths for absolute frequency measurement of clock transition in 87Sr,” Appl. Phys. Express5(2), 022701 (2012). [CrossRef]
  23. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express18(2), 1667–1676 (2010). [CrossRef] [PubMed]
  24. A. J. Berglund, J. L. Hanssen, and J. J. McClelland, “Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms,” Phys. Rev. Lett.100(11), 113002 (2008). [CrossRef] [PubMed]
  25. K. Hosaka, H. Inaba, Y. Nakajima, M. Yasuda, T. Kohno, A. Onae, and Feng-Lei Hong, “Evaluation of the clock laser for an Yb lattice clock using an optical fibre comb,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control57(3), 606–612 (2010). [CrossRef]
  26. M. Prevedelli, T. Freegarde, and T. W. Hänsch, “Phase locking of grating-tuned diode lasers,” Appl. Phys. B60, S241–S248 (1995).
  27. D. Akamatsu, M. Yasuda, T. Kohno, A. Onae, and F.-L. Hong, “A compact light source at 461 nm using a periodically poled LiNbO3 waveguide for strontium magneto-optical trapping,” Opt. Express19(3), 2046–2051 (2011). [CrossRef] [PubMed]
  28. Y. Castin, H. Wallis, and J. Dalibard, “Limit of Doppler cooling,” J. Opt. Soc. Am. B6(11), 2046–2057 (1989). [CrossRef]
  29. T. H. Loftus, T. Ido, M. M. Boyd, A. D. Ludlow, and J. Ye, “Narrow line cooling and momentum-space crystals,” Phys. Rev. A70(6), 063413 (2004). [CrossRef]
  30. T. Kohno, M. Yasuda, K. Hosaka, H. Inaba, Y. Nakajima, and F.-L. Hong, “One-dimensional optical lattice clock with a fermionic 171Yb isotope,” Appl. Phys. Express2, 072501 (2009). [CrossRef]
  31. N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett.103(6), 063001 (2009). [CrossRef] [PubMed]
  32. S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett.100(14), 140801 (2008). [CrossRef] [PubMed]
  33. M. Takamoto, T. Takano, and H. Katori, “Frequency comparison of optical lattice clocks beyond the Dick limit,” Nat. Photonics5(5), 288–292 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited