OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 16083–16091

Luminorefrigeration: vibrational cooling of NaCs

A. Wakim, P. Zabawa, M. Haruza, and N. P. Bigelow  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 16083-16091 (2012)
http://dx.doi.org/10.1364/OE.20.016083


View Full Text Article

Enhanced HTML    Acrobat PDF (1054 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the use of optical pumping of kinetically ultracold NaCs to cool an initial vibrational distribution of electronic ground state molecules X1Σ+(v ≥ 4) into the vibrational ground state X1Σ+(v=0). Our approach is based on the use of simple, commercially available multimode diode lasers selected to optically pump population into X1Σ+(v=0). We investigate the impact of the cooling process on the rotational state distribution of the vibrational ground state, and observe that an initial distribution, Jinitial=0–2 is only moderately affected resulting in Jfinal=0–4. This method provides an inexpensive approach to creation of vibrational ground state ultracold polar molecules.

© 2012 OSA

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: May 23, 2012
Revised Manuscript: June 22, 2012
Manuscript Accepted: June 23, 2012
Published: June 29, 2012

Citation
A. Wakim, P. Zabawa, M. Haruza, and N. P. Bigelow, "Luminorefrigeration: vibrational cooling of NaCs," Opt. Express 20, 16083-16091 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-16083


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes: Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium11, 255–265 (1950). [CrossRef]
  2. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett.61, 826–829 (1988). [CrossRef] [PubMed]
  3. W. D. Phillips, “Nobel lecture: Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys.70, 721–741 (1998). [CrossRef]
  4. M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, “Optical pumping and vibrational cooling of molecules,” Science321(5886), 232–234 (2008). [CrossRef] [PubMed]
  5. D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A80, 051401 (2009). [CrossRef]
  6. P. F. Staanum, K. Højbjerre, P. S. Skyt, A. K. Hansen, and M. Drewsen, “Rotational laser cooling of vibrationally and translationally cold molecular ions,” Nat. Phys.6, 271–274 (2010). [CrossRef]
  7. T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the rovibrational ground state,” Nat. Phys.6, 275–278 (2010). [CrossRef]
  8. H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, “Strongly correlated 2d quantum phases with cold polar molecules: Controlling the shape of the interaction potential,” Phys. Rev. Lett.98, 060404 (2007). [CrossRef] [PubMed]
  9. G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D. W. Wang, and P. Zoller, “Cold atoms and molecules in self-assembled dipolar lattices,” Phys. Rev. Lett.100, 050402 (2008). [CrossRef] [PubMed]
  10. L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A82, 062323 (2010). [CrossRef]
  11. S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss.142, 351–359 (2009). [CrossRef]
  12. J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, “Optical production of ultracold polar molecules,” Phys. Rev. Lett.94, 203001 (2005). [CrossRef] [PubMed]
  13. K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science322, 231–235 (2008). [CrossRef] [PubMed]
  14. J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett.101(13), 133004 (2008). [CrossRef] [PubMed]
  15. P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+(v″=0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A84, 061401 (2011). [CrossRef]
  16. O. Docenko, M. Tamanis, J. Zaharova, R. Ferber, A. Pashov, H. Knöckel, and E. Tiemann, “The coupling of the X1Σ+ and a3Σ+ states of the atom pair Na + Cs and modeling cold collisions,” J. Phys. B39, S929–S943 (2006). [CrossRef]
  17. A. Grochola, P. Kowalczyk, and W. Jastrzebski, “Investigation of the B1Π state in NaCs by polarisation labeling spectroscopy,” Chem. Phys. Lett.497, 22–25 (2010). [CrossRef]
  18. J. Zaharova, M. Tamanis, R. Ferber, A. N. Drozdova, E. A. Pazyuk, and A. V. Stolyarov, “Solution of the fully-mixed-state problem: Direct deperturbation analysis of the A1Σ+– b3Π complex in a NaCs dimer,” Phys. Rev. A79(1), 012508 (2009). [CrossRef]
  19. A. Grochola, P. Kowalczyk, J. Szczepkowski, W. Jastrzebski, A. Wakim, P. Zabawa, and N. P. Bigelow, “Spin-forbidden c3Σ+(Ω=1)←X1Σ+ transition in NaCs: Investigation of the Ω=1 state in hot and cold environments,” Phys. Rev. A84, 012507 (2011). [CrossRef]
  20. A. Wakim, P. Zabawa, and N. P. Bigelow, “Photoassociation studies of ultracold NaCs from the Cs 62P3/2 asymptote,” Phys. Chem. Chem. Phys.13, 18887–18892 (2011). [CrossRef] [PubMed]
  21. P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A82, 040501 (2010). [CrossRef]
  22. R. J. Le Roy, Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (2007). [PubMed]
  23. D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A75(3), 032511 (2007). [CrossRef]
  24. M. Aymar and O. Dulieu, “Calculation of accurate permanent dipole moments of the lowest 1,3Σ+ states of heteronuclear alkali dimers using extended basis sets,” J. Chem. Phys.122, 204302 (2005). [CrossRef] [PubMed]
  25. Private Communication with A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber.
  26. Purchased from Intense Laser Co.
  27. Purchased from Thorlabs.
  28. R. Ferber, I. Klincare, O. Nikolayeva, M. Tamanis, H. Knöckel, E. Tiemann, and A. Pashov, “The ground electronic state of KCs studied by Fourier transform spectroscopy,” J. Chem. Phys.128, 244316 (2008). [CrossRef] [PubMed]
  29. A. Kruzins, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E. A. Pazyuk, and A. V. Stolyarov, “Fourier-transform spectroscopy and coupled-channels deperturbation treatment of the A1Σ+ – b3Π complex of KCs,” Phys. Rev. A81, 042509 (2010). [CrossRef]
  30. J. T. Kim, Y. Lee, and A. V. Stolyarov, “Quasi-relativistic treatment of the low-lying KCs states,” J. Mol. Spec.256, 57–67 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited