OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 16092–16103

Transmission phase control by stacked metal-dielectric hole array with two-dimensional geometric design

Takayuki Matsui, Hideki T. Miyazaki, Atsushi Miura, Tsuyoshi Nomura, Hisayoshi Fujikawa, Kazuo Sato, Naoki Ikeda, Daiju Tsuya, Masayuki Ochiai, Yoshimasa Sugimoto, Masanori Ozaki, Masanori Hangyo, and Kiyoshi Asakawa  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 16092-16103 (2012)
http://dx.doi.org/10.1364/OE.20.016092


View Full Text Article

Enhanced HTML    Acrobat PDF (1581 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transmission phase control is experimentally demonstrated using stacked metal-dielectric hole arrays with a two-dimensional geometric design. The transmission phase varies drastically with small frequency shifts due to structural resonances. Laterally propagating surface plasmon polaritons excited by the periodic hole array roughly determine the resonance frequency, whereas localized resonances in each hole determine the dispersion. The transmission phase at various frequencies is directly evaluated using interferometric microscopy, and the formation of an inclined wavefront is demonstrated using a beam steering element in which the hole shapes gradually change in-plane from square to circular.

© 2012 OSA

OCIS Codes
(180.3170) Microscopy : Interference microscopy
(160.3918) Materials : Metamaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 16, 2012
Revised Manuscript: June 25, 2012
Manuscript Accepted: June 26, 2012
Published: June 29, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Takayuki Matsui, Hideki T. Miyazaki, Atsushi Miura, Tsuyoshi Nomura, Hisayoshi Fujikawa, Kazuo Sato, Naoki Ikeda, Daiju Tsuya, Masayuki Ochiai, Yoshimasa Sugimoto, Masanori Ozaki, Masanori Hangyo, and Kiyoshi Asakawa, "Transmission phase control by stacked metal-dielectric hole array with two-dimensional geometric design," Opt. Express 20, 16092-16103 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-16092


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London)391, 667–669 (1998). [CrossRef]
  2. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86, 1114–1117 (2001). [CrossRef] [PubMed]
  3. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London)445, 39–46 (2007). [CrossRef]
  4. D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98, 093113 (2011). [CrossRef]
  5. S. A. Maier, Plasmonics: Fundamentals and Applications (Splinger-Verlag, 2007).
  6. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58, 6779–6782 (1998). [CrossRef]
  7. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Morenno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95, 103901 (2005). [CrossRef] [PubMed]
  8. P. Lalanne, J. C. Rodier, and J. P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A: Pure Appl. Opt.7, 422–426 (2005). [CrossRef]
  9. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96, 233901 (2006). [CrossRef] [PubMed]
  10. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature (London)452, 728–731 (2008). [CrossRef]
  11. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95, 137404 (2005). [CrossRef] [PubMed]
  12. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science312, 892–894 (2006). [CrossRef] [PubMed]
  13. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature (London)455, 376–380 (2008). [CrossRef]
  14. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express13, 4922–4929 (2005). [CrossRef] [PubMed]
  15. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett.31, 1800–1802 (2006). [CrossRef] [PubMed]
  16. X. Chen, T. M. Grzegorczyk, B-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E70, 016608 (2004). [CrossRef]
  17. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E71, 036617 (2005). [CrossRef]
  18. A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.101, 103902 (2008). [CrossRef] [PubMed]
  19. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79, 075425 (2009). [CrossRef]
  20. J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107, 043903 (2011). [CrossRef] [PubMed]
  21. M. Iwanaga, “In-plane plasmonic modes of negative group velocity in perforated waveguides,” Opt. Lett.36, 2504–2506 (2011). [CrossRef] [PubMed]
  22. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary tTransmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004). [CrossRef]
  23. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express15, 11536–11541 (2007). [CrossRef] [PubMed]
  24. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006). [CrossRef]
  25. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett.96, 097401 (2006). [CrossRef] [PubMed]
  26. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B75, 035411 (2007). [CrossRef]
  27. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37, 5271–5283 (1998). [CrossRef]
  28. M. B. Sinclair, M. P. de Boer, and A. D. Corwin, “Long-working-distance incoherent-light interference microscope,” Appl. Opt.44, 7714–7721 (2005). [CrossRef] [PubMed]
  29. M. Beruete, M. Sorolla, and I. Campillo, “Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays,” Opt. Express14, 5445–5455 (2006). [CrossRef] [PubMed]
  30. R. Marqués, L. Jelinek, F. Mesa, and F. Medina, “Analytical theory of wave propagation through stacked fishnet metamaterials,” Opt. Express17, 11582–11593 (2009). [CrossRef] [PubMed]
  31. H. Yoshida, T. Matsui, A. Miura, N. Ikeda, M. Ochiai, Y. Sugimoto, H. Fujikawa, and M. Ozaki, “Uniform liquid crystal alignment on metallic nanohole arrays by vapor-phase deposition of silane coupling agent,” Opt. Mater. Express2, 893–899 (2012). [CrossRef]
  32. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tatienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011). [CrossRef] [PubMed]
  33. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335, 427 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited