OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 16113–16128

Space-time resolved simulation of femtosecond nonlinear light-matter interactions using a holistic quantum atomic model : Application to near-threshold harmonics

M. Kolesik, E. M. Wright, J. Andreasen, J. M. Brown, D. R. Carlson, and R. J. Jones  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 16113-16128 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1326 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a new computational approach for femtosecond pulse propagation in the transparency region of gases that permits full resolution in three space dimensions plus time while fully incorporating quantum coherent effects such as high-harmonic generation and strong-field ionization in a holistic fashion. This is achieved by utilizing a one-dimensional model atom with a delta-function potential which allows for a closed-form solution for the nonlinear optical response due to ground-state to continuum transitions. It side-steps evaluation of the wave function, and offers more than one hundred-fold reduction in computation time in comparison to direct solution of the atomic Schrödinger equation. To illustrate the capability of our new computational approach, we apply it to the example of near-threshold harmonic generation in Xenon, and we also present a qualitative comparison between our model and results from an in-house experiment on extreme ultraviolet generation in a femtosecond enhancement cavity.

© 2012 OSA

OCIS Codes
(190.4160) Nonlinear optics : Multiharmonic generation
(190.5940) Nonlinear optics : Self-action effects
(320.0320) Ultrafast optics : Ultrafast optics
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: June 6, 2012
Revised Manuscript: June 20, 2012
Manuscript Accepted: June 20, 2012
Published: June 29, 2012

M. Kolesik, E. M. Wright, J. Andreasen, J. M. Brown, D. R. Carlson, and R. J. Jones, "Space-time resolved simulation of femtosecond nonlinear light-matter interactions using a holistic quantum atomic model : Application to near-threshold harmonics," Opt. Express 20, 16113-16128 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441, 47–189 (2007). [CrossRef]
  2. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high harmonics generation by low-frequency laser fields,” Phys. Rev. A49, 2117–2132 (1994). [CrossRef] [PubMed]
  3. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. Wolf, “Ultrashort filaments of light in weakly ionized optically transparent media,” Rep. Prog. Phys.70, 1633–1713 (2007). [CrossRef]
  4. M. Gaarde, J. Tate, and K. Schafer, “Macroscopic aspects of attosecond pulse generation,” J. Phys. B: At. Mol. Opt. Phys.41, 132001 (2008). [CrossRef]
  5. M. Nurhuda, A. Suda, and K. Midorikawa, “Generalization of the Kerr effect for high intensity, ultrashort laser pulses,” New J. Phys.10, 053006 (2008). [CrossRef]
  6. E. A. Volkova, A. M. Popov, and O. V. Tikhonova, “Nonlinear polarization response of an atomic gas medium in the field of a high-intensity femtosecond laser pulse,” JETP Lett.94, 519–524 (2011). [CrossRef]
  7. I. Christov, “Propagation of ultrashort pulses in gaseous medium:breakdown of the quasistatic approximation,” Opt. Express6, 34–39 (2000). [CrossRef] [PubMed]
  8. E. Lorin, S. Chelkowski, and A. D. Bandrauk, “The WASP model: A Micro-Macro system of Wave-Schrödinger-Plasma equations for filamentation,” Commun. Comput. Phys.9, 406–440 (2011).
  9. Q. Su and J. Eberly, “Model atom for multiphoton physics,” Phys. Rev. A44, 5997–6008 (1991). [CrossRef] [PubMed]
  10. G. P. Arrighini and M. Gavarini, “Ionization of a model atom by strong and superstrong electric fields,” Lett. Nuovo Cimento33, 353–358 (1982). [CrossRef]
  11. W. Elberfeld and M. Kleber, “Tunneling from an ultrathin quantum well in a strong electrostatic field: A comparison of different methods,” Z. Phys. B: Cond. Matt.73, 23–32 (1988). [CrossRef]
  12. R. M. Cavalcanti, P. Giacconi, and R. Soldati, “Decay in a uniform field: an exactly solvable model,” J. Phys. A: Math. Gen.36, 12065–12080 (2003). [CrossRef]
  13. H. Uncu, H. Erkol, E. Demiralp, and H. Beker, “Solutions of the Schrödinger equation for dirac delta decorated linear potential,” C. Eur. J. Phys.3, 303–323 (2005). [CrossRef]
  14. G. Álvarez and B. Sundaram, “Perturbation theory for the stark effect in a double quantum well,” J. Phys. A: Math. Gen.37, 9735–9748 (2004). [CrossRef]
  15. V. M. Villalba and L. A. González-Díaz, “Particle resonance in the dirac equation in the presence of a delta interaction and a perturbative hyperbolic potential,” Eur. Phys. J. C61, 519–525 (2009). [CrossRef]
  16. S. Geltman, “Ionisation dynamics of a model atom in an electrostatic field,” J. Phys. B: At. Mol. Phys.11, 3323–3337 (1978). [CrossRef]
  17. G. V. Dunne and C. S. Gauthier, “Simple soluble molecular ionization model,” Phys. Rev. A69, 053409 (2004). [CrossRef]
  18. Q. Su, B. P. Irving, C. W. Johnson, and J. H. Eberly, “Stabilization of a one-dimensional short-range model atom in intense laser fields,” J. Phys. B: At. Mol. Opt.29, 5755–5764 (1996). [CrossRef]
  19. T. Dziubak and J. Matulewski, “Stabilization of one-dimensional soft-core and singular model atoms,” Eur. Phys. J. D59, 321–327 (2010). [CrossRef]
  20. A. Sanpera, Q. Su, and L. Roso-Franco, “Ionization suppression in a very-short-range potential,” Phys. Rev. A47, 2312–2318 (1993). [CrossRef] [PubMed]
  21. S. Geltman, “Short-pulse model-atom studies of ionization in intense laser fields,” J. Phys. B - At. Mol. Opt.27, 1497–1514 (1994). [CrossRef]
  22. Z. X. Zhao, B. D. Esry, and C. D. Lin, “Boundary-free scaling calculation of the time-dependent Schrödinger equation for laser-atom interactions,” Phys. Rev. A65, 023402 (2002). [CrossRef]
  23. A. Teleki, E. M. Wright, and M. Kolesik, “Microscopic model for the higher-order nonlinearity in optical filaments,” Phys. Rev. A82, 065801 (2010). [CrossRef]
  24. J. M. Brown, E. M. Wright, J. V. Moloney, and M. Kolesik, “On the relative roles of higher-order nonlinearity and ionization in ultrafast light-matter interactions,” Opt. Lett.37, 1604–1606 (2012). [CrossRef] [PubMed]
  25. J. Brown, A. Lotti, A. Teleki, and M. Kolesik, “Exactly solvable model for non-linear light-matter interaction in an arbitrary time-dependent field,” Phys. Rev. A84, 063424 (2011). [CrossRef]
  26. J. Lee, D. R. Carlson, and R. J. Jones, “Optimizing intracavity high harmonic generation for xuv fs frequency combs,” Opt. Express19, 23315–23326 (2011). [CrossRef] [PubMed]
  27. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E70, 036604 (2004). [CrossRef]
  28. A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7—140.4 nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spect. Rad. Transfer25, 395–402 (1981). [CrossRef]
  29. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett71, 1994–1997 (1993). [CrossRef] [PubMed]
  30. K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett.70, 1599–1602 (1993). [CrossRef] [PubMed]
  31. F. Schapper, M. Holler, T. Auguste, A. Zaïr, M. Weger, P. Salières, L. Gallmann, and U. Keller, “Spatial finger-print of quantum path interferences in high order harmonic generation,” Opt. Express18, 2987–2994 (2010). [CrossRef] [PubMed]
  32. S. M. Teichmann, D. R. Austin, P. Bates, S. Cousin, A. Grün, M. Clerici, A. Lotti, D. Faccio, P. DiTrapani, A. Couairon, and J. Biegert, “Trajectory interferences in a semi-infinite gas cell,” Laser Phys. Lett.9, 207–211 (2012). [CrossRef]
  33. A. L’Huillier, K.J. Schafer, and K.C. Kulander, “High-order harmonic generation in Xenon at 1064 nm: The role of phase matching,” Phys. Rev. Lett.66, 2200–2203 (1991). [CrossRef]
  34. P. Salières, A. L’Huillier, and M. Lewenstein, “Coherence control of high-order harmonics,” Phys. Rev. Lett.743776–3779 (1995). [CrossRef] [PubMed]
  35. E. Constant, D. Garzella, P. Breger, E. Mvel, C. Dorrer, C. Le Blanc, F. Sali, and P. Agostini, “Optimizing high harmonic generation in absorbing gases: Model and experiment,” Phys. Rev. Lett.82, 1668–1671 (1999). [CrossRef]
  36. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett.94, 193201 (2005). [CrossRef] [PubMed]
  37. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, “A frequency comb in the extreme ultraviolet,” Nature436, 234–237 (2005). [CrossRef] [PubMed]
  38. D. R. Carlson, J. Lee, J. Mongelli, E. M. Wright, and R. J. Jones, “Intracavity ionization and pulse formation in femtosecond enhancement cavities,” Opt. Lett.36, 2991–2993 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited