OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16154–16165

Investigation of FWM in dispersion-engineered GaInP photonic crystal waveguides

Kevin Lengle, Laurent Bramerie, Mathilde Gay, Marcia Costa e Silva, Sebastien Lobo, Jean-Claude Simon, Pierre Colman, Sylvain Combrie, and Alfredo de Rossi  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16154-16165 (2012)
http://dx.doi.org/10.1364/OE.20.016154


View Full Text Article

Enhanced HTML    Acrobat PDF (2337 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the investigation of four-wave mixing (FWM) in a long (1.3 mm) dispersion-engineered Gallium Indium Phosphide (GaInP) photonic crystal (PhC) waveguide. A comparison with a non-engineered design is made with respect to measured FWM efficiency maps. A striking different response is observed, in terms of dependence on the pump wavelength and the spectral detuning. The benefits and the limitations of both structures are discussed, in particular the trade-off between slow-light enhancement of the FWM efficiency and the conversion bandwidth. The time-resolved parametric conversion of short pulses at 10 GHz is also shown. Finally, the transmission capability of a 40 Gbit/s RZ signal is assessed through bit-error rate measurements, revealing error-free operation with only 1dB penalty.

© 2012 OSA

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 26, 2012
Revised Manuscript: May 17, 2012
Manuscript Accepted: May 29, 2012
Published: July 2, 2012

Citation
Kevin Lengle, Laurent Bramerie, Mathilde Gay, Marcia Costa e Silva, Sebastien Lobo, Jean-Claude Simon, Pierre Colman, Sylvain Combrie, and Alfredo de Rossi, "Investigation of FWM in dispersion-engineered GaInP photonic crystal waveguides," Opt. Express 20, 16154-16165 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16154


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Observation of soliton pulse compression in photonic crystal waveguides,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA10.
  2. J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature433(7028), 811–812 (2005). [CrossRef] [PubMed]
  3. A. Shinya, S. Matsuo, T. Yosia, E. Tanabe, T. Kuramochi, T. Sato, Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16(23), 19382–19387 (2008). [CrossRef] [PubMed]
  4. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010). [CrossRef]
  5. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010). [CrossRef]
  6. J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19(5), 4458–4463 (2011). [CrossRef] [PubMed]
  7. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express18(22), 22915–22927 (2010). [CrossRef] [PubMed]
  8. S. Combrié, P. Colman, C. Husko, Q. V. Tran, and A. De Rossi, “Advances in III-V based photonic crystals for integrated optical processing,” Proc. SPIE7608, 760815 (2010). [CrossRef]
  9. H. Benisty, J. M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent Advances toward optical devices in semiconductor based photonic crystals,” Proc. IEEE94(5), 997–1023 (2006). [CrossRef]
  10. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008). [CrossRef]
  11. M. Soljačić, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B19(9), 2052–2059 (2002). [CrossRef]
  12. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010). [CrossRef]
  13. B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett.36(9), 1728–1730 (2011). [CrossRef] [PubMed]
  14. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express14(4), 1658–1672 (2006). [CrossRef] [PubMed]
  15. L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi B244(10), 3528–3539 (2007). [CrossRef]
  16. T. F. Krauss, “Why do we need slow light?” Nat. Photonics2(8), 448–450 (2008). [CrossRef]
  17. C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt.12(10), 104003 (2010). [CrossRef]
  18. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys.40(9), 2666–2670 (2007). [CrossRef]
  19. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express17(4), 2944–2953 (2009). [CrossRef] [PubMed]
  20. S. Combrié, Q. V. Tran, A. de Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95(22), 221108 (2009). [CrossRef]
  21. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett.35(9), 1440–1442 (2010). [CrossRef] [PubMed]
  22. M. Santagiustina, C. G. Someda, G. Vadalà, S. Combrié, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18(20), 21024–21029 (2010). [CrossRef] [PubMed]
  23. S. Combrié, Q. V. Tran, E. Weidner, A. de Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007). [CrossRef]
  24. P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express20(12), 13108–13114 (2012). [CrossRef] [PubMed]
  25. Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009). [CrossRef]
  26. M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009). [CrossRef] [PubMed]
  27. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005). [CrossRef] [PubMed]
  28. L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express15(20), 13129–13138 (2007). [CrossRef] [PubMed]
  29. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. B.72(16), 161318 (2005).
  30. C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, “Nontrivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides,” Opt. Express17(25), 22442–22451 (2009). [CrossRef] [PubMed]
  31. C. Husko, P. Colman, S. Combrié, A. De Rossi, and C. W. Wong, “Effect of multiphoton absorption and free carriers in slow-light photonic crystal waveguides,” Opt. Lett.36(12), 2239–2241 (2011). [CrossRef] [PubMed]
  32. K. Lengle, A. Akrout, M. Costa e Silva, L. Bramerie, J. C. Simon, S. Combrie, P. Colman, and A. de Rossi, “10 GHz demonstration of four wave mixing in photonic crystal waveguides,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper P2.24.
  33. M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express17(20), 18340–18353 (2009). [CrossRef] [PubMed]
  34. M. R. Lamont, B. T. Kuhlmey, and C. M. de Sterke, “Multi-order dispersion engineering for optimal four-wave mixing,” Opt. Express16(10), 7551–7563 (2008). [CrossRef] [PubMed]
  35. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express15(20), 12949–12958 (2007). [CrossRef] [PubMed]
  36. P. Colman, I. Cestier, A. Willinger, S. Combrié, G. Lehoucq, G. Eisenstein, and A. De Rossi, “Observation of parametric gain due to four-wave mixing in dispersion engineered GaInP photonic crystal waveguides,” Opt. Lett.36(14), 2629–2631 (2011). [CrossRef] [PubMed]
  37. I. Cestier, A. Willinger, P. Colman, S. Combrié, G. Lehoucq, A. De Rossi, and G. Eisenstein, “Efficient parametric interactions in a low loss GaInP photonic crystal waveguide,” Opt. Lett.36(19), 3936–3938 (2011). [CrossRef] [PubMed]
  38. S. Mazoyer, A. Baron, J. P. Hugonin, P. Lalanne, and A. Melloni, “Slow pulses in disorder photonic-crystal waveguides,” Appl. Opt.50(31), G113–G117 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited