OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16166–16173

Growth of sparse arrays of narrow GaN nanorods hosting spectrally stable InGaN quantum disks

Yen-Ting Chen, Wen-Che Tsai, Wen-Yen Chen, Ching-Lien Hsiao, Hsu-Cheng Hsu, Wen-Hao Chang, Tzu-Min Hsu, Kuei-Hsien Chen, and Li-Chyong Chen  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16166-16173 (2012)
http://dx.doi.org/10.1364/OE.20.016166


View Full Text Article

Enhanced HTML    Acrobat PDF (1230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wafer-scale production of single InGaN quantum disks (QD) in-a-nanorod array with small rod diameter (> 9 nm) and low rod-density (< 108 cm−2) has been achieved without extensive processing steps. Excitation power-dependent μPL spectrum of single QD reveals multi-excitonic peak with 0.75 meV blue-shift for 3 orders of magnitude increasing power, indicating the present system is spectrally stable and nearly free of quantum-confined Stark effects, due possibly to the strain relaxation induced by free surface of small rod diameters. The fully polarized emissions, a high working temperature (180 K), low rod density and good alignment, render this system promising as a potential quantum photon source.

© 2012 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(160.4236) Materials : Nanomaterials
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: March 23, 2012
Revised Manuscript: April 27, 2012
Manuscript Accepted: June 11, 2012
Published: July 2, 2012

Citation
Yen-Ting Chen, Wen-Che Tsai, Wen-Yen Chen, Ching-Lien Hsiao, Hsu-Cheng Hsu, Wen-Hao Chang, Tzu-Min Hsu, Kuei-Hsien Chen, and Li-Chyong Chen, "Growth of sparse arrays of narrow GaN nanorods hosting spectrally stable InGaN quantum disks," Opt. Express 20, 16166-16173 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16166


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006). [CrossRef] [PubMed]
  2. J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN nanocavities with AlN/GaN Bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005). [CrossRef] [PubMed]
  3. J. Renard, R. Songmuang, C. Bougerol, B. Daudin, and B. Gayral, “Exciton and biexciton luminescence from single GaN/AlN quantum dots in nanowires,” Nano Lett. 8(7), 2092–2096 (2008). [CrossRef] [PubMed]
  4. R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1-xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009). [CrossRef]
  5. M. J. Holmes, Y. S. Park, J. H. Warner, and R. A. Taylor, “Quantum confined Stark effect and corresponding lifetime reduction in a single InxGa1-xN quantum disk,” Appl. Phys. Lett. 95(18), 181910 (2009). [CrossRef]
  6. L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011). [CrossRef] [PubMed]
  7. F. Glas, “Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires,” Phys. Rev. B 74(12), 121302 (2006). [CrossRef]
  8. H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010). [CrossRef]
  9. H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004). [CrossRef] [PubMed]
  10. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 123(12), 2791–2798 (2001). [CrossRef] [PubMed]
  11. R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter, and H. Lüth, “Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy,” Nano Lett. 7(8), 2248–2251 (2007). [CrossRef] [PubMed]
  12. K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006). [CrossRef]
  13. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010). [CrossRef]
  14. S. Amloy, Y. T. Chen, K. F. Karlsson, K. H. Chen, H. C. Hsu, C. L. Hsiao, L. C. Chen, and P. O. Holtz, “Polarization-resolved fine-structure splitting of zero-dimensional In(x)Ga(1-x)N excitons,” Phys. Rev. B 83(20), 201307 (2011). [CrossRef]
  15. M. Sénès, K. L. Smith, T. M. Smeeton, S. E. Hooper, and J. Heffernan, “Strong carrier confinement in InxGa1-xN/GaN quantum dots grown by molecular beam epitaxy,” Phys. Rev. B 75(4), 045314 (2007). [CrossRef]
  16. A. F. Jarjour, R. A. Oliver, A. Tahraoui, M. J. Kappers, C. J. Humphreys, and R. A. Taylor, “Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot,” Phys. Rev. Lett. 99(19), 197403 (2007). [CrossRef] [PubMed]
  17. A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010). [CrossRef] [PubMed]
  18. C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010). [CrossRef]
  19. O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, and Y. Arakawa, “Narrow photoluminescence peaks from localized states in InGaN quantum dot structures,” Appl. Phys. Lett. 76(17), 2361–2363 (2000). [CrossRef]
  20. V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kummell, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, “Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots,” Phys. Rev. Lett. 82(8), 1780–1783 (1999). [CrossRef]
  21. S. Amloy, K. F. Karlsson, T. G. Andersson, and P. O. Holtz, “On the polarized emission from exciton complexes in GaN quantum dots,” Appl. Phys. Lett. 100(2), 021901 (2012). [CrossRef]
  22. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68(21), 3121–3124 (1992). [CrossRef] [PubMed]
  23. C. W. Hsu, A. Lundskog, K. F. Karlsson, U. Forsberg, E. Janzén, and P. O. Holtz, “Single excitons in InGaN quantum dots on GaN pyramid arrays,” Nano Lett. 11(6), 2415–2418 (2011). [CrossRef] [PubMed]
  24. J. Kalden, C. Tessarek, K. Sebald, S. Figge, C. Kruse, D. Hommel, and J. Gutowski, “Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K,” Nanotechnology 21(1), 015204 (2010). [CrossRef] [PubMed]
  25. K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, and D. Hommel, “Micro-photoluminescence studies of InGaN/GaN quantum dots up to 150 K,” Phys. Status Solidi, B Basic Res. 243(7), 1661–1664 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited