OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16258–16268

Theoretical analysis of enhanced nonlinear conversion from metallo-dielectric nano-structures

Elsie Barakat, Maria-Pilar Bernal, and Fadi Issam Baida  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16258-16268 (2012)
http://dx.doi.org/10.1364/OE.20.016258


View Full Text Article

Enhanced HTML    Acrobat PDF (1833 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new configuration of sub-wavelength silver coaxial apertures filled with Lithium Niobate (LN) is proposed to enhance the Second Harmonic Generation (SHG) in transmission mode. The chosen geometrical parameters allows having both TE11 guided mode excitation for local field confinement of the fundamental signal and Fabry-Perot high transmission of the SH wave. Furthermore, an implementation of the three-dimensional Finite Difference Time Domain (3D-FDTD) method for nonlinear optical simulation is described. This method provides a direct calculation of the nonlinear polarizations before calculating the nonlinear electric and magnetic fields. FDTD studies shows that by embedding metallic nano-structures, for exciting TE11 like-mode inside a nonlinear material (LN), we achieve a SH signal 27 times higher than that generated on unpatterned LN.

© 2012 OSA

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(130.4310) Integrated optics : Nonlinear
(190.2620) Nonlinear optics : Harmonic generation and mixing
(160.3918) Materials : Metamaterials

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 15, 2012
Revised Manuscript: June 22, 2012
Manuscript Accepted: June 22, 2012
Published: July 2, 2012

Citation
Elsie Barakat, Maria-Pilar Bernal, and Fadi Issam Baida, "Theoretical analysis of enhanced nonlinear conversion from metallo-dielectric nano-structures," Opt. Express 20, 16258-16268 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16258


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Raad, E. Inaty, P. Fortier, and H. M. H. Shalaby, “Optical S-ALOHA/CDMA Systems for Multirate Applications: Architecture, Performance Evaluation, and System Stability,” J. Lightwave Technol.24, 1968–1977 (2006). [CrossRef]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58, 2059–2062 (1987). [CrossRef] [PubMed]
  3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58, 2486–2489 (1987). [CrossRef] [PubMed]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London)391, 667–669 (1998). [CrossRef]
  5. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature (London)452, 728–731 (2008). [CrossRef]
  6. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun.209, 17–22 (2002). [CrossRef]
  7. F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,” Phys. Rev. B67, 155314–155317 (2003). [CrossRef]
  8. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B74, 205419–205426 (2006). [CrossRef]
  9. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays,” Phys. Rev. B97, 146102–146106 (2006). [CrossRef]
  10. S. Park, J. W. Hahn, and J. Y. Lee, “Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation,” Opt. Express4, 4856–4871 (2012). [CrossRef]
  11. E. A. Mamonov, T. V. Murzina, I. A. Kolmychek, A. I. Maydykovsky, V. K. Valev, A. V. Silhanek, E. Ponizovskaya, A. Bratkovsky, T. Verbiest, V. V. Moshchalkov, and O. A. Aktsipetrov, “Coherent and incoherent second harmonic generation in planar G-shaped nanostructures,” Opt. Lett.36, 3681–3683 (2011). [CrossRef] [PubMed]
  12. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local Field Asymmetry Drives Second-Harmonic Generation in Noncentrosymmetric Nanodimers,” Nano Lett.20, 1251–1255 (2007). [CrossRef]
  13. R. Zhou, H. Lu, X. Liu, Y. Gong, and D. Mao, “Second-harmonic generation from a periodic array of noncentrosymmetric nanoholes,” J. Opt. Soc. Am. B27, 2405–2409 (2010). [CrossRef]
  14. Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B79, 235109–235118 (2009). [CrossRef]
  15. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87, 241101–241104 (2005). [CrossRef]
  16. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett.7, 118–119 (1961). [CrossRef]
  17. E. Barakat, M.-P. Bernal, and F. I. Baida, “Second harmonic generation enhancement by use of annular aperture arrays embedded into silver and filled by lithium niobate,” Opt. Express18, 6530–6536 (2010). [CrossRef] [PubMed]
  18. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2005).
  19. M. N.O. Sadiku, Numerical Techniques in Electromagnetics (CRC Press, 2000). [CrossRef]
  20. Y. R. Shen, The Principles of Nonlinear Optics (Wiley Interscience, 1984).
  21. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett.90, 13903–13907 (2003). [CrossRef]
  22. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag.14, 302–307 (1966). [CrossRef]
  23. J. Dahdah, J. Hoblos, and F. I. Baida, “Nano-coaxial waveguide grating as quarter-wave plates in the visible range,” IEEE Photon. J.4, 87–94 (2011). [CrossRef]
  24. W. Sellmeier, “Zur Erklrung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Ann. Phys. Chem.219, 272–282 (1981).
  25. W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6, 1027–1030 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited