OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16348–16357

Interplay of various loss mechanisms and ultimate size limit of a surface plasmon polariton semiconductor nanolaser

D. B. Li and C. Z. Ning  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 16348-16357 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (899 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The issue of an ultimate size limit of a surface plasmon polariton (SSP) nanolaser is investigated by a systematic simulation study. We consider a prototypic design of a metal-insulator-semiconductor multi-layer structure with finite, varying lateral sizes. Our focus is on the design of such lasers operating at room temperature under the electrical injection. We find that there is an interesting interplay between the facet loss and the SPP propagation loss and that such interplay leads to the existence of a minimum-threshold mode in each mode group. The red-shift of the minimum-threshold mode with the decrease of device thickness leads to a further reduction of threshold gain, making the threshold for the SPP nanolaser achievable for many semiconductors, even at room temperature. In addition, we find that the threshold can be further reduced by using thinner metal cladding without much exacerbated mode leakage. Finally, a specific design example is optimized using Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As single quantum well sandwiched between silver layers, which has a physical volume of 1.5 × 10-4 λ 0 3 , potentially the smallest semiconductor nanolasers designed or demonstrated so far.

© 2012 OSA

OCIS Codes
(250.5403) Optoelectronics : Plasmonics
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:

Original Manuscript: April 24, 2012
Revised Manuscript: May 28, 2012
Manuscript Accepted: June 22, 2012
Published: July 3, 2012

D. B. Li and C. Z. Ning, "Interplay of various loss mechanisms and ultimate size limit of a surface plasmon polariton semiconductor nanolaser," Opt. Express 20, 16348-16357 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B247, 774–788 (2010).
  2. M. T. Hill, “Status and prospects for metallic and plasmonic nano-lasers,” J. Opt. Soc. Am. B27(11), B36–B44 (2010). [CrossRef]
  3. M. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  4. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  5. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  6. S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010). [CrossRef] [PubMed]
  7. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010). [CrossRef]
  8. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010). [CrossRef] [PubMed]
  9. C. Y. Lu and S. L. Chuang, “A surface-emitting 3D metal-nanocavity laser: proposal and theory,” Opt. Express19(14), 13225–13244 (2011). [CrossRef] [PubMed]
  10. K. Ding, Z. C. Liu, L. J. Yin, H. Wang, R. B. Liu, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98(23), 231108 (2011). [CrossRef]
  11. K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B85(4), 041301 (2012). [CrossRef]
  12. M. J. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express19(16), 15109–15118 (2011). [CrossRef] [PubMed]
  13. A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE6468, 646801 (2007).
  14. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003). [CrossRef] [PubMed]
  15. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  16. D. B. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-infrared wavelengths,” Opt. Express19(15), 14594–14603 (2011). [CrossRef] [PubMed]
  17. S. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).
  18. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express12(17), 4072–4079 (2004). [CrossRef] [PubMed]
  19. S. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun.258(2), 295–299 (2006). [CrossRef]
  20. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express16(2), 1385–1392 (2008). [CrossRef] [PubMed]
  21. D. B. Li and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B80(15), 153304 (2009). [CrossRef]
  22. G. Colas des Francs, P. Bramant, J. Grandidier, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Optical gain, spontaneous and stimulated emission of surface plasmon polaritons in confined plasmonic waveguide,” Opt. Express18(16), 16327–16334 (2010). [CrossRef] [PubMed]
  23. www.comsol.com .
  24. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  25. W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals (Springer-Verlag, Berlin, 1999).
  26. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984). [CrossRef]
  27. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 5th ed. (World Scientific, Hoboken, 2009).
  28. C. Manolatou and F. Rana, “Subwavelength Nanopatch Cavities for Semiconductor Plasmon Lasers,” IEEE J. Quantum Electron.44(5), 435–447 (2008). [CrossRef]
  29. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett.33(11), 1261–1263 (2008). [CrossRef] [PubMed]
  30. D. B. Li and C. Z. Ning, “Peculiar features of confinement factors in a metal-semiconductor waveguide,” Appl. Phys. Lett.96(18), 181109 (2010). [CrossRef]
  31. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  32. S. Adachi, “GaAs, AlAs, and AlxGa1−xAs B: Material parameters for use in research and device applications,” J. Appl. Phys.58(3), R1–R29 (1985). [CrossRef]
  33. W. Batty, U. Ekenberg, A. Ghit, and E. P. O'Reilly, “Valence subband structure and optical gain of GaAs-AlGaAs (111) quantum wells,” Semicond. Sci. Technol.4(11), 904–909 (1989). [CrossRef]
  34. D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited