OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16394–16409

Bit detect and forward relaying for FSO links using equal gain combining over gamma-gamma atmospheric turbulence channels with pointing errors

Antonio García-Zambrana, Carmen Castillo-Vázquez, Beatriz Castillo-Vázquez, and Rubén Boluda-Ruiz  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16394-16409 (2012)
http://dx.doi.org/10.1364/OE.20.016394


View Full Text Article

Enhanced HTML    Acrobat PDF (853 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An unsuitable alignment between transmitter and receiver together with fluctuations in the irradiance of the transmitted optical beam due to the atmospheric turbulence can severely degrade the performance of free-space optical (FSO) systems. In this paper, cooperative FSO communications with decode-and-forward (DF) relaying and equal gain combining (EGC) reception over atmospheric turbulence and misalignment fading channels is analyzed in order to mitigate these impairments. Novel closed-form asymptotic bit error-rate (BER) expressions are derived for a 3-way FSO communication setup when the irradiance of the transmitted optical beam is susceptible to either a wide range of turbulence conditions (weak to strong), following a gamma-gamma distribution of parameters α and β, or pointing errors, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. Obtained results provide significant insight into the impact of various system and channel parameters, showing that the diversity order is independent of the pointing error when the equivalent beam radius at the receiver is at least 2β1/2 times the value of the pointing error displacement standard deviation at the receiver. It is contrasted that the available diversity order is strongly dependent on the relay location, achieving greater diversity gains when the diversity order is determined by βAC + βBC, where βAC and βBC are parameters corresponding to the turbulence of the source-destination and relay-destination links. Simulation results are further demonstrated to confirm the accuracy and usefulness of the derived results.

© 2012 OSA

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.4510) Fiber optics and optical communications : Optical communications
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 14, 2012
Revised Manuscript: June 27, 2012
Manuscript Accepted: June 27, 2012
Published: July 3, 2012

Citation
Antonio García-Zambrana, Carmen Castillo-Vázquez, Beatriz Castillo-Vázquez, and Rubén Boluda-Ruiz, "Bit detect and forward relaying for FSO links using equal gain combining over gamma-gamma atmospheric turbulence channels with pointing errors," Opt. Express 20, 16394-16409 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16394


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. W. S. Chan, “Free-Space Optical Communications,” J. Lightwave Technol.24(12), 4750–4762 (2006). [CrossRef]
  2. L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, “Hybrid optical RF airborne communications,” Proc. IEEE97(6), 1109–1127 (2009). [CrossRef]
  3. W. Lim, C. Yun, and K. Kim, “BER performance analysis of radio over free-space optical systems considering laser phase noise under gamma-gamma turbulence channels,” Opt. Express17(6), 4479–4484 (2009). [CrossRef] [PubMed]
  4. L. Andrews, R. Phillips, and C. Hopen, Laser beam scintillation with applications (Bellingham, WA: SPIE Press, 2001). [CrossRef]
  5. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun.50(8), 1293–1300 (2002). [CrossRef]
  6. E. J. Lee and V. W. S. Chan, “Part 1: optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun.22(9), 1896–1906 (2004). [CrossRef]
  7. I. B. Djordjevic, S. Denic, J. Anguita, B. Vasic, and M. Neifeld, “LDPC-coded MIMO optical communication over the atmospheric turbulence channel,” J. Lightwave Technol.26(5), 478–487 (2008). [CrossRef]
  8. T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun.8(2), 951–957 (2009). [CrossRef]
  9. E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun.57(11), 3415–3424 (2009). [CrossRef]
  10. E. Bayaki and R. Schober, “On space-time coding for free-space optical systems,” IEEE Trans. Commun.58(1), 58–62 (2010). [CrossRef]
  11. A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels,” Opt. Express18(6), 5356–5366 (2010). [CrossRef] [PubMed]
  12. A. García-Zambrana, B. Castillo-Vázquez, and C. Castillo-Vázquez, “Average capacity of FSO links with transmit laser selection using non-uniform OOK signaling over exponential atmospheric turbulence channels,” Opt. Express18(19), 445–454 (2010). [CrossRef]
  13. S. Arnon, “Effects of atmospheric turbulence and building sway on optical wireless-communication systems,” Opt. Lett.28(2), 129–131 (2003). [CrossRef] [PubMed]
  14. A. A. Farid and S. Hranilovic, “Outage capacity optimization for free-space optical links with pointing errors,” J. Lightwave Technol.25(7), 1702–1710 (2007). [CrossRef]
  15. H. G. Sandalidis, “Coded free-space optical links over strong turbulence and misalignment fading channels,” IEEE Trans. Commun.59(3), 669–674 (2011). [CrossRef]
  16. H. G. Sandalidis, T. A. Tsiftsis, and G. K. Karagiannidis, “Optical wireless communications with heterodyne detection over turbulence channels with pointing errors,” J. Lightwave Technol.27(20), 4440–4445 (2009). [CrossRef]
  17. W. Gappmair, S. Hranilovic, and E. Leitgeb, “Performance of PPM on terrestrial FSO links with turbulence and pointing errors,” IEEE Commun. Lett.14(5), 468–470 (2010). [CrossRef]
  18. A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Outage performance of MIMO FSO links over strong turbulence and misalignment fading channels,” Opt. Express19(14),480–496 (2011). [CrossRef]
  19. A. García-Zambrana, B. Castillo-Vázquez, and C. Castillo-Vázquez, “Asymptotic error-rate analysis of FSO links using transmit laser selection over gamma-gamma atmospheric turbulence channels with pointing errors,” Opt. Express20(3), 2096–2109 (2012). [CrossRef] [PubMed]
  20. A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity. Part I. System description,” IEEE Trans. Commun.51(11), 1927 – 1938 (2003). [CrossRef]
  21. A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity. Part II. Implementation aspects and performance analysis,” IEEE Trans. Commun.51(11), 1939 – 1948 (2003). [CrossRef]
  22. J. Laneman, D. Tse, and G. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inf. Theory50(12), 3062 – 3080 (2004). [CrossRef]
  23. M. Safari and M. Uysal, “Relay-assisted free-space optical communication,” IEEE Trans. Wireless Commun.7(12), 5441–5449 (2008). [CrossRef]
  24. M. Karimi and M. Nasiri-Kenari, “BER analysis of cooperative systems in free-space optical networks,” J. Light-wave Technol.27(24), 5639 –5647 (2009). [CrossRef]
  25. M. Karimi and M. Nasiri-Kenari, “Outage analysis of relay-assisted free-space optical communications,” IET Communications4(12), 1423 –1432 (2010). [CrossRef]
  26. C. Abou-Rjeily and A. Slim, “Cooperative diversity for free-space optical communications: transceiver design and performance analysis,” IEEE Trans. Commun.59(3), 658 –663 (2011). [CrossRef]
  27. C. Abou-Rjeily and S. Haddad, “Cooperative FSO systems: performance analysis and optimal power allocation,” J. Lightwave Technol.29(7), 1058 –1065 (2011). [CrossRef]
  28. M. Bhatnagar, “Performance analysis of decode-and-forward relaying in gamma-gamma fading channels,” IEEE Photon. Technol. Lett.24(7), 545 –547 (2012). [CrossRef]
  29. A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Rate-adaptive FSO links over atmospheric turbulence channels by jointly using repetition coding and silence periods,” Opt. Express18(24),422–440 (2010). [CrossRef]
  30. D. K. Borah and D. G. Voelz, “Pointing error effects on free-space optical communication links in the presence of atmospheric turbulence,” J. Lightwave Technol.27(18), 3965–3973 (2009). [CrossRef]
  31. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng.40, 8 (2001). [CrossRef]
  32. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series and products, 7th ed. (Academic Press Inc., 2007).
  33. N. Wang and J. Cheng, “Moment-based estimation for the shape parameters of the gamma-gamma atmospheric turbulence model.” Opt. Express18(12), 824–831 (2010). [CrossRef]
  34. Z. Wang and G. B. Giannakis, “A simple and general parameterization quantifying performance in fading channels,” IEEE Trans. Commun.51(8), 1389–1398 (2003). [CrossRef]
  35. Wolfram Research Inc., “The Wolfram functions site,” URL http://functions.wolfram.com .
  36. V. S. Adamchik and O. I. Marichev, “The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system,” in Proc. Int. Conf. on Symbolic and Algebraic Computation, 212–224 (Tokyo, Japan, 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited