OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16671–16676

Portable frequency combs for optical frequency metrology

Chris Lee, Sai Tak Chu, Brent E. Little, Joss Bland-Hawthorn, and Sergio Leon-Saval  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16671-16676 (2012)
http://dx.doi.org/10.1364/OE.20.016671


View Full Text Article

Enhanced HTML    Acrobat PDF (862 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a temperature stabilized CMOS-compatible frequency comb based on an integrated optical micro-ring resonator. The instrument operates in the wavelength interval 1520-1600 nm with a wide free spectral range (FSR) of 200 GHz. By embedding a highly sensitive “resistive thermal device” (RTD) on the surface of the chip to provide temperature feedback to the thermal electric cooler, the bench top unit achieves wavelength stability of ~1 pm over a 24 hour period with good power stability. The new frequency comb is designed to be robust, compact and portable. Our approach reduces the cost and complexity of existing high precision frequency combs currently used in the fields of metrology, remote sensing and stellar spectroscopy where high stability is required for prolonged periods of time.

© 2012 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.0230) Optical devices : Optical devices

ToC Category:
Integrated Optics

History
Original Manuscript: March 8, 2012
Revised Manuscript: April 26, 2012
Manuscript Accepted: April 26, 2012
Published: July 9, 2012

Citation
Chris Lee, Sai Tak Chu, Brent E. Little, Joss Bland-Hawthorn, and Sergio Leon-Saval, "Portable frequency combs for optical frequency metrology," Opt. Express 20, 16671-16676 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16671


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  2. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008). [CrossRef] [PubMed]
  3. S. Lopez, “Astronomy. The universe measured with a comb,” Science321(5894), 1301–1302 (2008). [CrossRef] [PubMed]
  4. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature452(7187), 610–612 (2008). [CrossRef] [PubMed]
  5. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett.31(20), 3046–3048 (2006). [CrossRef] [PubMed]
  6. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett.29(21), 2467–2469 (2004). [CrossRef] [PubMed]
  7. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011). [CrossRef] [PubMed]
  8. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010). [CrossRef]
  9. P. Z. Dashti, Q. Li, and H. P. Lee, “All-fiber narrowband polarization controller based on coherent acousto-optic mode coupling in single-mode fiber,” Opt. Lett.29(20), 2426–2428 (2004). [CrossRef] [PubMed]
  10. H. Lin, “Waveband-tunable multi-wavelength Er-doped fiber laser,” Appl. Opt.49(14), 2653–2657 (2010). [CrossRef]
  11. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107(6), 063901 (2011). [CrossRef] [PubMed]
  12. M. Razik, A. Budnicki, and K. M. Abrams, “ASE source at 1550 nm,” Proc. SPIE5576, 135–138 (2004). [CrossRef]
  13. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008). [CrossRef]
  14. D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett.31(13), 2012–2014 (2006). [CrossRef] [PubMed]
  15. M. T. Tinker and J. B. Lee, “Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency,” Opt. Express13(18), 7174–7188 (2005). [CrossRef] [PubMed]
  16. A. Gusarov and F. Liegeois, “Experimental study of a tunable fiber ring laser stability,” Opt. Commun.234(1-6), 391–397 (2004). [CrossRef]
  17. T. M. Fortier, A. Bartels, and S. A. Diddams, “Octave-spanning Ti:sapphire laser with a repetition rate >1 GHz for optical frequency measurements and comparisons,” Opt. Lett.31(7), 1011–1013 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited