OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16763–16776

Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations

Chao Liu, Lei Bi, R. Lee Panetta, Ping Yang, and Maxim A. Yurkin  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 16763-16776 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (899 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The pseudo-spectral time domain (PSTD) and the discrete dipole approximation (DDA) are two popular and robust methods for the numerical simulation of dielectric particle light scattering. The present study compares the numerical performances of the two methods in the computation of the single-scattering properties of homogeneous dielectric spheres and spheroids for which the exact solutions can be obtained from the Lorenz-Mie theory and the T-matrix theory. The accuracy criteria for the extinction efficiency and the phase function are prescribed to be the same for the PSTD and DDA in order that the computational time can be compared in a fair manner. The computational efficiency and applicability of the two methods are each shown to depend on both the size parameter and the refractive index of the scattering particle. For a small refractive index, a critical size parameter, which decreases from 80 to 30 as the refractive index increases from 1.2 to 1.4, exists below which the DDA outperforms the PSTD. For large refractive indices (>1.4), the PSTD is more efficient than the DDA for a wide size parameter range and has a larger region of applicability. Furthermore, the accuracy shown by the two methods in the computation of backscatter, linear polarization, and asymmetry factor is comparable. The comparison was extended to include spheroids with typical refractive indices of ice and dust and similar conclusions were drawn.

© 2012 OSA

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(290.0290) Scattering : Scattering

ToC Category:

Original Manuscript: May 7, 2012
Revised Manuscript: June 22, 2012
Manuscript Accepted: July 1, 2012
Published: July 10, 2012

Chao Liu, Lei Bi, R. Lee Panetta, Ping Yang, and Maxim A. Yurkin, "Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations," Opt. Express 20, 16763-16776 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, 1957).
  2. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic Press, 2000).
  3. G. Mie, “Beitrȁge zur optik trȕber medien, speziell kolloidaler metallȍsungen,” Ann. Phys.330(3), 377–445 (1908). [CrossRef]
  4. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: A review,” J. Quant. Spectrosc. Radiat. Transf.55(5), 535–575 (1996). [CrossRef]
  5. M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transf.60(3), 309–324 (1998). [CrossRef]
  6. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J.186, 705–714 (1973). [CrossRef]
  7. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J.333, 848–872 (1988). [CrossRef]
  8. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf.106(1-3), 558–589 (2007). [CrossRef]
  9. Y. You, G. W. Kattawar, P.-W. Zhai, and P. Yang, “Zero-backscatter cloak for aspherical particles using a generalized DDA formalism,” Opt. Express16(3), 2068–2079 (2008). [CrossRef] [PubMed]
  10. P. C. Chaumet and A. Rahmani, “Coupled-dipole method for magnetic and negative-refraction materials,” J. Quant. Spectrosc. Radiat. Transf.110(1-2), 22–29 (2009). [CrossRef]
  11. R. Alcaraz de la Osa, P. Albella, J. M. Saiz, F. González, and F. Moreno, “Extended discrete dipole approximation and its application to bianisotropic media,” Opt. Express18(23), 23865–23871 (2010). [CrossRef] [PubMed]
  12. K. S. Yee, “Numerical solutin of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966). [CrossRef]
  13. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A13(10), 2072–2085 (1996). [CrossRef]
  14. W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt.38(15), 3141–3151 (1999). [CrossRef] [PubMed]
  15. W. Sun and Q. Fu, “Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices,” Appl. Opt.39(30), 5569–5578 (2000). [CrossRef] [PubMed]
  16. G. Chen, P. Yang, and G. W. Kattawar, “Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles,” J. Opt. Soc. Am. A25(3), 785–790 (2008). [CrossRef] [PubMed]
  17. C. Liu, R. Lee Panetta, and P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properites for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transf.113(13), 1728–1740 (2012). [CrossRef]
  18. M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express15(26), 17902–17911 (2007). [CrossRef] [PubMed]
  19. Q. H. Liu, “The PSTD algorithm: A time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett.15(3), 158–165 (1997). [CrossRef]
  20. M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: Capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf.112(13), 2234–2247 (2011). [CrossRef]
  21. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf.106(1-3), 546–557 (2007). [CrossRef]
  22. B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.1,” http://arxiv.org/abs/1002.1505 (2010).
  23. M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc. IEEE93(2), 216–231 (2005). [CrossRef]
  24. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994). [CrossRef]
  25. Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antenn. Propag.43(12), 1460–1463 (1995). [CrossRef]
  26. P. Zhai, C. Li, G. W. Kattawar, and P. Yang, “FDTD far-field scattering amplitudes: Comparison of surface and volume integration methods,” J. Quant. Spectrosc. Radiat. Transf.106(1-3), 590–594 (2007). [CrossRef]
  27. K. V. Gilev, E. Eremina, M. A. Yurkin, and V. P. Maltsev, “Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells,” Opt. Express18(6), 5681–5690 (2010). [CrossRef] [PubMed]
  28. S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: A revised compilation,” J. Geophys. Res.113(D14), D14220 (2008), doi:. [CrossRef]
  29. O. Muñoz, F. Moreno, D. Guirado, D. D. Dabrowska, H. Volten, and J. W. Hovenier, “The Amsterdam-Granada light scattering database,” J. Quant. Spectrosc. Radiat. Transf.113(7), 565–574 (2012). [CrossRef]
  30. B. Piller and O. J. F. Martin, “Increasing the performance of the coupled-dipole approximation: A spectral approach,” IEEE Trans. Antenn. Propag.46(8), 1126–1137 (1998). [CrossRef]
  31. M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.82(3 Pt 2), 036703 (2010). [CrossRef] [PubMed]
  32. A. Bunse-Gerstner and R. Stover, “On a conjugate gradient-type method for solving complex symmetric linear systems,” Lin. Alg. Appl.287(1-3), 105–123 (1999). [CrossRef]
  33. I. Ayranci, R. Vaillon, and N. Selcuk, “Performance of discrete dipole approximation for prediction of amplitude and phase of electromagnetic scattering by particles,” J. Quant. Spectrosc. Radiat. Transf.103(1), 83–101 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited