OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16785–16793

Competition between excitation and emission enhancements of quantum dots on disordered plasmonic nanostructures

Seung Ho Choi, Bongseop Kwak, Bumsoo Han, and Young L. Kim  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16785-16793 (2012)
http://dx.doi.org/10.1364/OE.20.016785


View Full Text Article

Enhanced HTML    Acrobat PDF (1456 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmon-enhanced fluorescence is attributable to two independent processes: 1) excitation enhancement due to an increased electric field near metallic nanostructures and 2) emission enhancement from a surface plasmon resonance-coupled excited state of fluorophores. Using semiconductor nanocrystals (quantum dots) on disordered plasmonic nanostructures and a mesoscopic imaging approach, we demonstrate that increased excitation can diminish the fluorescence emission enhancement efficiency. Thus, our experimental evidence on this competitive behavior has critical implications for better developing plasmon-enhanced photoluminescence.

© 2012 OSA

OCIS Codes
(100.2980) Image processing : Image enhancement
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: May 17, 2012
Revised Manuscript: June 29, 2012
Manuscript Accepted: July 2, 2012
Published: July 10, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Seung Ho Choi, Bongseop Kwak, Bumsoo Han, and Young L. Kim, "Competition between excitation and emission enhancements of quantum dots on disordered plasmonic nanostructures," Opt. Express 20, 16785-16793 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16785


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett.7(3), 690–696 (2007). [CrossRef] [PubMed]
  2. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express15(21), 14266–14274 (2007). [CrossRef] [PubMed]
  3. Y. Zhang, A. Dragan, and C. D. Geddes, “Wavelength dependence of metal-enhanced fluorescence,” J. Phys. Chem. C113(28), 12095–12100 (2009). [CrossRef]
  4. Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett.93(5), 053106 (2008). [CrossRef]
  5. K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett.10(7), 2598–2603 (2010). [CrossRef] [PubMed]
  6. V. I. Klimov, ed., Semiconductor and Metal Nanocrystals (CRC Press, 2003).
  7. D. Tonti, F. van Mourik, and M. Chergui, “On the excitation wavelength dependence of the luminescence yield of colloidal CdSe quantum dots,” Nano Lett.4(12), 2483–2487 (2004). [CrossRef]
  8. Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt.15(6), 060503 (2010). [CrossRef] [PubMed]
  9. Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 815–823 (2010). [CrossRef]
  10. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron.9(2), 243–256 (2003). [CrossRef]
  11. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006). [CrossRef] [PubMed]
  12. L. N. Xu, B. J. Lee, W. L. Hanson, and B. Han, “Brownian motion induced dynamic near-field interaction between quantum dots and plasmonic nanoparticles in aqueous medium,” Appl. Phys. Lett.96(17), 174101 (2010). [CrossRef]
  13. E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett.5(4), 585–589 (2005). [CrossRef] [PubMed]
  14. J. Kim, G. Dantelle, A. Revaux, M. Bérard, A. Huignard, T. Gacoin, and J. P. Boilot, “Plasmon-induced modification of fluorescent thin film emission nearby gold nanoparticle monolayers,” Langmuir26(11), 8842–8849 (2010). [CrossRef] [PubMed]
  15. http://www.horiba.com/scientific/products/fluorescence-spectroscopy/application-notes/quantum-yields
  16. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007). [CrossRef] [PubMed]
  17. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402 (2002). [CrossRef] [PubMed]
  18. J. H. Song, T. Atay, S. F. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett.5(8), 1557–1561 (2005). [CrossRef] [PubMed]
  19. D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett.10(1), 274–278 (2010). [CrossRef] [PubMed]
  20. W. Jacak, J. Krasnyj, J. Jacak, W. Donderowicz, and L. Jacak, “Mechanism of plasmon-mediated enhancement of photovoltaic efficiency,” J. Phys. D Appl. Phys.44(5), 055301 (2011). [CrossRef]
  21. S. M. Sadeghi, R. G. West, and A. Nejat, “Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots,” Nanotechnology22(40), 405202 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited